Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation

被引:5
|
作者
Leta, Temesgen Desta [1 ,2 ]
Chen, Jingbing [2 ]
El Achab, Abdelfattah [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Reading, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Cadi Ayyad, Fac Sci Semlalia, Bd Prince Moulay Abdellah,BP 2390, Marrakech, Morocco
基金
中国国家自然科学基金;
关键词
Bifurcation; Complex Ginzburg-Landau equation; Traveling wave solution; Chaotic behavior; SOLITARY WAVE SOLUTIONS; DEFINITION; DYNAMICS;
D O I
10.1007/s11082-023-05153-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the fractional complex Ginzburg-Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Soliton solutions and Backlund transformation for the complex Ginzburg-Landau equation
    Liu, Wen-Jun
    Tian, Bo
    Jiang, Yan
    Sun, Kun
    Wang, Pan
    Li, Min
    Qu, Qi-Xing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4369 - 4376
  • [42] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720
  • [43] A Liouville theorem for the fractional Ginzburg-Landau equation
    Li, Yayun
    Chen, Qinghua
    Lei, Yutian
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) : 727 - 731
  • [44] Fractional Ginzburg-Landau equation for fractal media
    Tarasov, VE
    Zaslavsky, GM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 : 249 - 261
  • [45] Soliton solutions, sensitivity analysis, and multistability analysis for the modified complex Ginzburg-Landau model
    Kopcasiz, Bahadir
    Yasar, Emrullah
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (03):
  • [46] Dynamics of the 3-D fractional complex Ginzburg-Landau equation
    Lu, Hong
    Bates, Peter W.
    Lu, Shujuan
    Zhang, Mingji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5276 - 5301
  • [47] Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg-Landau Equation
    S. Yu. Vernov
    Theoretical and Mathematical Physics, 2006, 146 : 131 - 139
  • [48] Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation
    Montgomery, KA
    Silber, M
    NONLINEARITY, 2004, 17 (06) : 2225 - 2248
  • [49] Finding solitons in bifurcations of stationary solutions of complex Ginzburg-Landau equation
    Timotijevic, D. V.
    Derbazi, M.
    Skarka, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (05) : 853 - 858
  • [50] Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    OPTICS COMMUNICATIONS, 2003, 221 (1-3) : 199 - 209