Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation

被引:5
|
作者
Leta, Temesgen Desta [1 ,2 ]
Chen, Jingbing [2 ]
El Achab, Abdelfattah [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Reading, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Cadi Ayyad, Fac Sci Semlalia, Bd Prince Moulay Abdellah,BP 2390, Marrakech, Morocco
基金
中国国家自然科学基金;
关键词
Bifurcation; Complex Ginzburg-Landau equation; Traveling wave solution; Chaotic behavior; SOLITARY WAVE SOLUTIONS; DEFINITION; DYNAMICS;
D O I
10.1007/s11082-023-05153-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the fractional complex Ginzburg-Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.
引用
收藏
页数:28
相关论文
共 50 条