Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation

被引:5
|
作者
Leta, Temesgen Desta [1 ,2 ]
Chen, Jingbing [2 ]
El Achab, Abdelfattah [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Reading, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Cadi Ayyad, Fac Sci Semlalia, Bd Prince Moulay Abdellah,BP 2390, Marrakech, Morocco
基金
中国国家自然科学基金;
关键词
Bifurcation; Complex Ginzburg-Landau equation; Traveling wave solution; Chaotic behavior; SOLITARY WAVE SOLUTIONS; DEFINITION; DYNAMICS;
D O I
10.1007/s11082-023-05153-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the fractional complex Ginzburg-Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Innovative solutions and sensitivity analysis of a fractional complex Ginzburg–Landau equation
    Temesgen Desta Leta
    Jingbing Chen
    Abdelfattah El Achab
    Optical and Quantum Electronics, 2023, 55
  • [2] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [3] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [4] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [5] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [6] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [7] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633
  • [8] Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation
    Ma, Li
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (05)
  • [9] The Inviscid Limit of the Fractional Complex Ginzburg-Landau Equation
    Wang, Lijun
    Li, Jingna
    Xia, Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (06) : 333 - 341
  • [10] Recurrent motion in the fractional complex Ginzburg-Landau equation
    Cheng, Ming
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)