Innovative solutions and sensitivity analysis of a fractional complex Ginzburg–Landau equation

被引:0
|
作者
Temesgen Desta Leta
Jingbing Chen
Abdelfattah El Achab
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Nanjing University of Information Science and Technology,College of Reading
[3] University Cadi Ayyad,Faculty of Science Semlalia
[4] Bd. du Prince Moulay Abdellah,undefined
来源
关键词
Bifurcation; Complex Ginzburg–Landau equation; Traveling wave solution; Chaotic behavior; 34K20; 34K18; 37G10; 78M25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fractional complex Ginzburg–Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.
引用
收藏
相关论文
共 50 条
  • [1] Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation
    Leta, Temesgen Desta
    Chen, Jingbing
    El Achab, Abdelfattah
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (10)
  • [2] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [3] Exact solutions to complex Ginzburg–Landau equation
    Yang Liu
    Shuangqing Chen
    Lixin Wei
    Bing Guan
    Pramana, 2018, 91
  • [4] Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg-Landau equation in communication systems
    Tang, Lu
    OPTIK, 2023, 276
  • [5] The local and global existence of solutions for a time fractional complex Ginzburg-Landau equation
    Zhang, Quanguo
    Li, Yaning
    Su, Menglong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 16 - 43
  • [6] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [7] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [8] Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation
    Ma, Li
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (05)
  • [9] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [10] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51