Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification

被引:3
|
作者
Toutouh, Jamal [1 ,2 ]
Nalluru, Subhash [2 ]
Hemberg, Erik [2 ]
O'Reilly, Una-May [2 ]
机构
[1] Univ Malaga, ITIS Software, Malaga 29071, Spain
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
Generative adversarial network; Semi supervised learning; Coevolution; Spatial distribution;
D O I
10.1016/j.asoc.2023.110890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Labeling images for classification can be expensive. Semi-Supervised Learning (SSL) Generative Adversarial Network (GAN) methods train good classifiers with a few labeled images. However, authors generally do not train SSL-GAN generators to produce new high-quality images, but as a component to train the classifier. In this article, we use a coevolutionary algorithm (CoEA) with SSL-GANs to train both the classifier and the image generative model using a few labeled images. A CoEA introduces diversity into the GAN training and mitigates training pathologies. We use a two-dimensional grid of GANs to inject diversity via distributed training that exchanges GAN components between neighboring cells based on performance and population-based hyperparameter tuning. In addition, we identify simple and efficient SSL-GAN architectures. We demonstrate the utility on three separate benchmark datasets, achieving good classification accuracy and high image quality generation while using fewer labeled data exemplars. The image quality and classification accuracy are also competitive with State-of-the-Art methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Wang, Lei
    Sun, Yu
    Wang, Zheng
    VISUAL COMPUTER, 2022, 38 (06): : 2009 - 2021
  • [22] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [23] Semi-supervised Generative Adversarial Hashing for Image Retrieval
    Wang, Guan'an
    Hu, Qinghao
    Cheng, Jian
    Hou, Zengguang
    COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 491 - 507
  • [24] Semi-Supervised Encrypted Traffic Classification With Deep Convolutional Generative Adversarial Networks
    Iliyasu, Auwal Sani
    Deng, Huifang
    IEEE ACCESS, 2020, 8 : 118 - 126
  • [25] Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification
    Tu, Ya
    Lin, Yun
    Wang, Jin
    Kim, Jeong-Uk
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 55 (02): : 243 - 254
  • [26] Co-training generative adversarial networks for semi-supervised classification method
    Xu, Zhe
    Geng, Jie
    Jiang, Wen
    Zhang, Zhuo
    Zeng, Qing-Jie
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (05): : 1127 - 1135
  • [27] A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification
    Wang, Shuwei
    Wang, Qiuyun
    Jiang, Zhengwei
    Wang, Xuren
    Jing, Rongqi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3775 - 3782
  • [28] Semi-supervised Seizure Prediction with Generative Adversarial Networks
    Nhan Duy Truong
    Zhou, Luping
    Kavehei, Omid
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2369 - 2372
  • [29] Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 568 - 576
  • [30] Semi-supervised Learning Using Generative Adversarial Networks
    Chang, Chuan-Yu
    Chen, Tzu-Yang
    Chung, Pau-Choo
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 892 - 896