Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification

被引:3
|
作者
Toutouh, Jamal [1 ,2 ]
Nalluru, Subhash [2 ]
Hemberg, Erik [2 ]
O'Reilly, Una-May [2 ]
机构
[1] Univ Malaga, ITIS Software, Malaga 29071, Spain
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
Generative adversarial network; Semi supervised learning; Coevolution; Spatial distribution;
D O I
10.1016/j.asoc.2023.110890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Labeling images for classification can be expensive. Semi-Supervised Learning (SSL) Generative Adversarial Network (GAN) methods train good classifiers with a few labeled images. However, authors generally do not train SSL-GAN generators to produce new high-quality images, but as a component to train the classifier. In this article, we use a coevolutionary algorithm (CoEA) with SSL-GANs to train both the classifier and the image generative model using a few labeled images. A CoEA introduces diversity into the GAN training and mitigates training pathologies. We use a two-dimensional grid of GANs to inject diversity via distributed training that exchanges GAN components between neighboring cells based on performance and population-based hyperparameter tuning. In addition, we identify simple and efficient SSL-GAN architectures. We demonstrate the utility on three separate benchmark datasets, achieving good classification accuracy and high image quality generation while using fewer labeled data exemplars. The image quality and classification accuracy are also competitive with State-of-the-Art methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Semi-supervised self-growing generative adversarial networks for image recognition
    Zhiwei Xu
    Haoqian Wang
    Yi Yang
    Multimedia Tools and Applications, 2021, 80 : 17461 - 17486
  • [32] Semi-supervised self-growing generative adversarial networks for image recognition
    Xu, Zhiwei
    Wang, Haoqian
    Yang, Yi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 17461 - 17486
  • [33] Semi-supervised convolutional generative adversarial networks for dynamic fault classification with manifold regularization
    Zheng, Junhua
    Wang, Jian
    Ye, Lingjian
    Zhuo, Yue
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 193 : 550 - 557
  • [34] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [35] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [36] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [37] Galaxy Image Translation with Semi-supervised Noise-reconstructed Generative Adversarial Networks
    Lin, Qiufan
    Fouchez, Dominique
    Pasquet, Jerome
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5634 - 5641
  • [38] Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks
    Diaz-Frances, Jose Angel
    Fernandez-Rodriguez, Jose David
    Thurnhofer-Hemsi, Karl
    Lopez-Rubio, Ezequiel
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (11)
  • [39] Staged Sketch-to-Image Synthesis via Semi-supervised Generative Adversarial Networks
    Li, Zeyu
    Deng, Cheng
    Yang, Erkun
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2694 - 2705
  • [40] Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
    Lai, Wei-Sheng
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30