PseudoDepth-SLR: Generating Depth Data for Sign Language Recognition

被引:0
|
作者
Sarhan, Noha [1 ]
Willruth, Jan M. [1 ]
Fritnrop, Simone [1 ]
机构
[1] Univ Hamburg, Vogt Kolln Str 30, D-22527 Hamburg, Germany
来源
COMPUTER VISION SYSTEMS, ICVS 2023 | 2023年 / 14253卷
关键词
Sign Language Recognition; Deep Learning; Depth Data; 3D Convolutional Neural Networks;
D O I
10.1007/978-3-031-44137-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the significance of depth data in Sign Language Recognition (SLR) and propose a novel approach for generating pseudo depth information from RGB data to boost performance and enable generalizability in scenarios where depth data is not available. For the depth generation, we rely on an approach that utilizes vision transformers as a backbone for depth prediction. We examine the effect of pseudo depth data on the performance of automatic SLR systems and conduct a comparative analysis between the generated pseudo depth data and actual depth data to evaluate their effectiveness and demonstrate the value of depth data in accurately recognizing sign language gestures. Our experiments show that our proposed generative depth architecture outperforms an RGB-only counterpart.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [41] Arabic Sign Language Recognition and Generating Arabic Speech Using Convolutional Neural Network
    Kamruzzaman, M. M.
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [42] Interpreting Sign Components from Accelerometer and sEMG Data for Automatic Sign Language Recognition
    Li, Yun
    Chen, Xiang
    Zhang, Xu
    Wang, Kongqiao
    Yang, Jihai
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 3358 - 3361
  • [43] A deep sign language recognition system for Indian sign language
    Soumen Das
    Saroj Kr. Biswas
    Biswajit Purkayastha
    Neural Computing and Applications, 2023, 35 : 1469 - 1481
  • [44] Challenges with Sign Language Datasets for Sign Language Recognition and Translation
    De Sisto, Mirella
    Vandeghinste, Vincent
    Gomez, Santiago Egea
    De Coster, Mathieu
    Shterionov, Dimitar
    Saggion, Horacio
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2478 - 2487
  • [45] A deep sign language recognition system for Indian sign language
    Das, Soumen
    Biswas, Saroj Kr
    Purkayastha, Biswajit
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02): : 1469 - 1481
  • [46] INDIAN SIGN LANGUAGE RECOGNITION
    Deora, Divya
    Bajaj, Nikesh
    2012 1ST INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGY TRENDS IN ELECTRONICS, COMMUNICATION AND NETWORKING (ET2ECN), 2012,
  • [47] Automatic Recognition of Mexican Sign Language Using a Depth Camera and Recurrent Neural Networks
    Mejia-Perez, Kenneth
    Cordova-Esparza, Diana-Margarita
    Terven, Juan
    Herrera-Navarro, Ana-Marcela
    Garcia-Ramirez, Teresa
    Ramirez-Pedraza, Alfonso
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [48] Sign Language Recognition System
    Pankajakshan, Priyanka C.
    Thilagavathi, B.
    2015 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2015,
  • [49] Combinational sign language recognition
    Gao, Liqing
    Feng, Wei
    Lyu, Fan
    Wan, Liang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [50] Arabic sign language recognition
    Mohandes, M
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS I AND II, 2001, : 753 - 759