PseudoDepth-SLR: Generating Depth Data for Sign Language Recognition

被引:0
|
作者
Sarhan, Noha [1 ]
Willruth, Jan M. [1 ]
Fritnrop, Simone [1 ]
机构
[1] Univ Hamburg, Vogt Kolln Str 30, D-22527 Hamburg, Germany
来源
COMPUTER VISION SYSTEMS, ICVS 2023 | 2023年 / 14253卷
关键词
Sign Language Recognition; Deep Learning; Depth Data; 3D Convolutional Neural Networks;
D O I
10.1007/978-3-031-44137-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the significance of depth data in Sign Language Recognition (SLR) and propose a novel approach for generating pseudo depth information from RGB data to boost performance and enable generalizability in scenarios where depth data is not available. For the depth generation, we rely on an approach that utilizes vision transformers as a backbone for depth prediction. We examine the effect of pseudo depth data on the performance of automatic SLR systems and conduct a comparative analysis between the generated pseudo depth data and actual depth data to evaluate their effectiveness and demonstrate the value of depth data in accurately recognizing sign language gestures. Our experiments show that our proposed generative depth architecture outperforms an RGB-only counterpart.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [31] SLR-YOLO: An improved YOLOv8 network for real-time sign language recognition
    Jia, Wanjun
    Li, Changyong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1663 - 1680
  • [32] Simple sign language recognition system based on data glove
    Harbin Inst of Technology, China
    Int Conf Signal Process Proc, (1257-1260):
  • [33] Impact of face swapping and data augmentation on sign language recognition
    Perea-Trigo, Marina
    Lopez-Ortiz, Enrique J.
    Soria-Morillo, Luis M.
    alvarez-Garcia, Juan A.
    Vegas-Olmos, J. J.
    UNIVERSAL ACCESS IN THE INFORMATION SOCIETY, 2024,
  • [34] Mutual Support of Data Modalities in the Task of Sign Language Recognition
    Gruber, Ivan
    Krnoul, Zdenek
    Hruz, Marek
    Kanis, Jakub
    Bohacek, Matyas
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3419 - 3428
  • [35] Wireless data gloves Malay sign language recognition system
    Swee, Tan Tian
    Ariff, A. K.
    Salleh, Sh-Hussain
    Seng, Siew Kean
    Huat, Leong Seng
    2007 6TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS & SIGNAL PROCESSING, VOLS 1-4, 2007, : 312 - 315
  • [36] SIGN LANGUAGE RECOGNITION BASED ON HAND AND BODY SKELETAL DATA
    Konstantinidis, Dimitrios
    Dimitropoulos, Kosmas
    Daras, Petros
    2018 - 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2018,
  • [37] SIGN LANGUAGE RECOGNITION BASED ON ADAPTIVE HMMS WITH DATA AUGMENTATION
    Guo, Dan
    Zhou, Wengang
    Wang, Meng
    Lie, Houqiang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2876 - 2880
  • [38] Improving Sign Language Recognition Performance Using Multimodal Data
    Nishimura, Tomoe
    Abbasi, Bahareh
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 184 - 189
  • [39] A simple sign language recognition system based on data glove
    Wu, JQ
    Gao, W
    Song, YB
    Liu, W
    Pang, B
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 1257 - 1260
  • [40] Turkish sign language recognition based on multistream data fusion
    Gunduz, Cemil
    Polat, Huseyin
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (02) : 1171 - 1186