Interpreting Sign Components from Accelerometer and sEMG Data for Automatic Sign Language Recognition

被引:0
|
作者
Li, Yun [1 ]
Chen, Xiang [1 ]
Zhang, Xu [2 ]
Wang, Kongqiao [3 ]
Yang, Jihai [1 ]
机构
[1] USTC, Dept Elect Sci & Technol, Hefei 230027, Peoples R China
[2] Rehabil Inst Chicago, SMPP, Chicago, IL 60611 USA
[3] Nokia China Investment Co Ltd, Nokia Res Ctr, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The identification of constituent components of each sign gesture is a practical way of establishing large-vocabulary sign language recognition (SLR) system. Aiming at developing such a system using portable accelerometer (ACC) and surface electromyographic (sEMG) sensors, this work proposes a method for automatic SLR at the component level. The preliminary experimental results demonstrate the effectiveness of the proposed method and the feasibility of interpreting sign components from ACC and sEMG data. Our study improves the performance of SLR based on ACC and sEMG sensors and will promote the realization of a large-vocabulary portable SLR system.
引用
收藏
页码:3358 / 3361
页数:4
相关论文
共 50 条
  • [1] A Sign-Component-Based Framework for Chinese Sign Language Recognition Using Accelerometer and sEMG Data
    Li, Yun
    Chen, Xiang
    Zhang, Xu
    Wang, Kongqiao
    Wang, Z. Jane
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (10) : 2695 - 2704
  • [2] Using sample entropy for automated sign language recognition on sEMG and accelerometer data
    Vasiliki E. Kosmidou
    Leontios I. Hadjileontiadis
    [J]. Medical & Biological Engineering & Computing, 2010, 48 : 255 - 267
  • [3] Using sample entropy for automated sign language recognition on sEMG and accelerometer data
    Kosmidou, Vasiliki E.
    Hadjileontiadis, Leontios I.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (03) : 255 - 267
  • [4] Sign Language Recognition Using Intrinsic-Mode Sample Entropy on sEMG and Accelerometer Data
    Kosmidou, Vasiliki E.
    Hadjileontiadis, Leontios J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (12) : 2879 - 2890
  • [5] Automatic Sign Language Recognition: A Survey
    Er-Rady, Adil
    Oulad Haj Thami, R.
    Faizi, R.
    Housni, H.
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2017, : 535 - 541
  • [6] The Human and the Context Components in the Design of Automatic Sign Language Recognition Systems
    Prietch, Soraia Silva
    dos Santos Paim, Polianna
    Olmos-Pineda, Ivan
    Garcia, Josefina Guerrero
    Gonzalez Calleros, Juan Manuel
    [J]. HUMAN-COMPUTER INTERACTION, HCI-COLLAB 2019, 2019, 1114 : 369 - 380
  • [7] Design and Recording of Czech Sign Language Corpus for Automatic Sign Language Recognition
    Campr, Pavel
    Hruz, Marek
    Zelezny, Milos
    [J]. INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 2213 - 2216
  • [8] Automatic sign language recognition: a social approach
    Gumiel, Jesus
    Serrano, Marina
    Moya, Jose Miguel
    [J]. LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : A221 - A224
  • [9] Automatic Indian Sign Language Recognition System
    Dixit, Karishma
    Jalal, Anand Singh
    [J]. PROCEEDINGS OF THE 2013 3RD IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2013, : 883 - 887
  • [10] Automatic synthesis of training data for sign language recognition using HMM
    Kawahigashi, Kana
    Shirai, Yoshiaki
    Miura, Jun
    Shimada, Nobutaka
    [J]. COMPUTERS HELPING PEOPLE WITH SPECIAL NEEDS, PROCEEDINGS, 2006, 4061 : 623 - 626