A continuous analog of the binary Darboux transformation for the Korteweg-de Vries equation

被引:1
|
作者
Rybkin, Alexei [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, POB 756660, Fairbanks, AK 99775 USA
基金
英国工程与自然科学研究理事会;
关键词
Darboux transformation; KdV equation; Riemann-Hilbert problem; KDV; SOLITON;
D O I
10.1111/sapm.12578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Korteweg-de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann-Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step-type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.
引用
收藏
页码:208 / 246
页数:39
相关论文
共 50 条
  • [21] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48
  • [22] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [23] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [24] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [25] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [26] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [27] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [28] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [29] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [30] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)