A continuous analog of the binary Darboux transformation for the Korteweg-de Vries equation

被引:1
|
作者
Rybkin, Alexei [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, POB 756660, Fairbanks, AK 99775 USA
基金
英国工程与自然科学研究理事会;
关键词
Darboux transformation; KdV equation; Riemann-Hilbert problem; KDV; SOLITON;
D O I
10.1111/sapm.12578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Korteweg-de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann-Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step-type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.
引用
收藏
页码:208 / 246
页数:39
相关论文
共 50 条