A continuous analog of the binary Darboux transformation for the Korteweg-de Vries equation

被引:1
|
作者
Rybkin, Alexei [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, POB 756660, Fairbanks, AK 99775 USA
基金
英国工程与自然科学研究理事会;
关键词
Darboux transformation; KdV equation; Riemann-Hilbert problem; KDV; SOLITON;
D O I
10.1111/sapm.12578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Korteweg-de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann-Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step-type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.
引用
收藏
页码:208 / 246
页数:39
相关论文
共 50 条
  • [1] Darboux transformation and solution of the modified Korteweg-de Vries equation
    Kemelbekova, G.
    Yesmakhanova, K.
    Tapeeva, S.
    Tungushbaeva, D.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 80 (04): : 98 - 102
  • [2] Noncommutative coupled complex modified Korteweg-de Vries equation: Darboux and binary Darboux transformations
    Riaz, H. Wajahat A.
    MODERN PHYSICS LETTERS A, 2019, 34 (7-8)
  • [3] On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions
    Ji, Jia-Liang
    Zhu, Zuo-Nong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 699 - 708
  • [4] Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation
    Wen Xiao-Yong
    Gao Yi-Tian
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (05) : 825 - 830
  • [5] Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation
    Geng, Xianguo
    Ren, Hongfeng
    He, Guoliang
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [6] Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation
    闻小永
    高以天
    Communications in Theoretical Physics, 2010, 53 (05) : 825 - 830
  • [7] Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations
    Zhang, Yi
    Ye, Rusuo
    Ma, Wenxiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 613 - 627
  • [8] Darboux transformation and soliton solutions for a three-component modified Korteweg-de Vries equation
    Wurile
    Zhaqilao
    WAVE MOTION, 2019, 88 : 73 - 84
  • [9] BACKLUND TRANSFORMATION FOR SOLUTIONS OF KORTEWEG-DE VRIES EQUATION
    WAHLQUIST, HD
    ESTABROOK, FB
    PHYSICAL REVIEW LETTERS, 1973, 31 (23) : 1386 - 1390
  • [10] Darboux transformation, soliton solutions of the variable coefficient nonlocal modified Korteweg-de Vries equation
    Zhang, Feng
    Hu, Yuru
    Xin, Xiangpeng
    Liu, Hanze
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):