Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation

被引:0
|
作者
Wen Xiao-Yong [1 ,2 ,3 ]
Gao Yi-Tian [1 ,2 ,4 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Coll Sci, Dept Math, Beijing 100192, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; discretized modified Korteweg-de Vries lattice equation; explicit solutions; symbolic computation; DIFFERENTIAL-DIFFERENCE EQUATIONS; HIROTA BILINEAR FORMALISM; ELLIPTIC FUNCTION-METHOD; SOLITARY WAVE SOLUTIONS; CLASSICAL R-MATRIX; INTEGRABLE SYSTEMS; VOLTERRA LATTICE; MKDV LATTICE; EVOLUTION-EQUATIONS; TODA LATTICE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
引用
下载
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [1] Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation
    闻小永
    高以天
    Communications in Theoretical Physics, 2010, 53 (05) : 825 - 830
  • [2] Darboux transformation and solution of the modified Korteweg-de Vries equation
    Kemelbekova, G.
    Yesmakhanova, K.
    Tapeeva, S.
    Tungushbaeva, D.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 80 (04): : 98 - 102
  • [3] On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions
    Ji, Jia-Liang
    Zhu, Zuo-Nong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 699 - 708
  • [4] Darboux transformation and soliton solutions for a three-component modified Korteweg-de Vries equation
    Wurile
    Zhaqilao
    WAVE MOTION, 2019, 88 : 73 - 84
  • [5] Darboux transformation, soliton solutions of the variable coefficient nonlocal modified Korteweg-de Vries equation
    Zhang, Feng
    Hu, Yuru
    Xin, Xiangpeng
    Liu, Hanze
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [6] BACKLUND TRANSFORMATION FOR SOLUTIONS OF MODIFIED KORTEWEG-DE VRIES EQUATION
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (05) : 1498 - 1498
  • [7] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [8] Explicit solutions and conservation laws of the coupled modified Korteweg-de Vries equation
    Xue, Bo
    Li, Fang
    Yang, Gang
    PHYSICA SCRIPTA, 2015, 90 (08)
  • [9] BACKLUND TRANSFORMATION FOR SOLUTIONS OF KORTEWEG-DE VRIES EQUATION
    WAHLQUIST, HD
    ESTABROOK, FB
    PHYSICAL REVIEW LETTERS, 1973, 31 (23) : 1386 - 1390
  • [10] Darboux transformation and interaction solutions of localized waves for a defocusing coupled complex modified Korteweg-de Vries equation
    Cui, Wenying
    Liu, Yinping
    MODERN PHYSICS LETTERS B, 2022, 36 (26N27):