Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation

被引:0
|
作者
Wen Xiao-Yong [1 ,2 ,3 ]
Gao Yi-Tian [1 ,2 ,4 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Coll Sci, Dept Math, Beijing 100192, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; discretized modified Korteweg-de Vries lattice equation; explicit solutions; symbolic computation; DIFFERENTIAL-DIFFERENCE EQUATIONS; HIROTA BILINEAR FORMALISM; ELLIPTIC FUNCTION-METHOD; SOLITARY WAVE SOLUTIONS; CLASSICAL R-MATRIX; INTEGRABLE SYSTEMS; VOLTERRA LATTICE; MKDV LATTICE; EVOLUTION-EQUATIONS; TODA LATTICE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [21] Noncommutative coupled complex modified Korteweg-de Vries equation: Darboux and binary Darboux transformations
    Riaz, H. Wajahat A.
    MODERN PHYSICS LETTERS A, 2019, 34 (7-8)
  • [22] EXPLICIT SOLUTIONS OF THE KORTEWEG-DE VRIES EQUATION WITHOUT SCATTERING DATA
    LAMBERT, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1979, 51 (03): : 431 - 445
  • [23] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [24] New type of solutions for the modified Korteweg-de Vries equation
    Liu, Xing-yu
    Lu, Bin-he
    Zhang, Da-jun
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [25] Periodic and rational solutions of modified Korteweg-de Vries equation
    Amdad Chowdury
    Adrian Ankiewicz
    Nail Akhmediev
    The European Physical Journal D, 2016, 70
  • [26] Soliton solutions of coupled complex modified Korteweg-de Vries system through Binary Darboux transformation
    Abbas, Zaheer
    Mushahid, Nosheen
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (09): : 711 - 728
  • [27] Darboux transformation, soliton solutions of the variable coefficient nonlocal modified Korteweg–de Vries equation
    Feng Zhang
    Yuru Hu
    Xiangpeng Xin
    Hanze Liu
    Computational and Applied Mathematics, 2022, 41
  • [28] Explicit solutions to a nonlocal 2-component complex modified Korteweg-de Vries equation
    Shi, Xujie
    Lv, Pei
    Qi, Cheng
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [29] Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation
    Geng, Xianguo
    Ren, Hongfeng
    He, Guoliang
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [30] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515