Study on Crack Propagation of Rock Bridge in Rock-like Material with Fractures under Compression Loading with Sudden Change Rate

被引:1
|
作者
Huang, Xuanqi [1 ]
Wan, Wen [1 ,2 ,3 ]
Wang, Min [2 ]
Zhou, Yu [2 ]
Liu, Jie [4 ]
Chen, Wei [4 ]
机构
[1] Hunan Univ Sci & Technol, Sch Civil Engn, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Resource Environm & Safety Engn, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Technol, Work Safety Key Lab Prevent & Control Gas & Roof D, Xiangtan 411201, Peoples R China
[4] Hunan Inst Engn, Architectural Engn Inst, Xiangtan 411101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 07期
基金
中国国家自然科学基金;
关键词
mechanical damage; micro mechanism; sudden change loading rate; loading rate; crack propagation; STRENGTH;
D O I
10.3390/app13074354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to study the influence of sudden change of loading rate on crack propagation and failure mode of rock bridge of fractured rock mass, the specimens used in this paper were rock-like materials containing two prefabricated fractures. The mechanical properties and the failure mode of the specimens under different constant loading rates and sudden changes in loading rate were tested. The photographic monitoring and acoustic emission were carried out at the same time. The results show that: (1) In the process of sudden change loading, the specimen shows the characteristics of approximate elastic deformation, and the stress-strain curve after sudden loading is similar to the corresponding stress-strain curve at the corresponding constant loading rate. (2) Combined with acoustic emission detection, it is found that when the loading rate is not much different before the mutation, the loading rates is the same after the mutation and the stress-strain curve of the specimen is similar. In the low-speed loading stage, the acoustic emission count is generally low, while in the high-speed loading stage, the acoustic emission count is generally high. The sudden change from low-speed loading to high-speed loading easily induces stress drop, resulting in crack generation and increase of acoustic emission count. (3) The rate of the specimen during the crack development period plays a decisive role in the failure mode of the specimen. Before the sudden change of loading rate, the low-speed loading within a certain range has little effect on the specimen. When the high-speed loading is carried out when the stress is low in the early stage of the mutation, the acoustic emission count of the specimen is high, which will cause some damage inside the specimen. As a result, even if the rate is the same after the mutation, the final peak stress and failure mode may be different.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Crack coalescence morphology in rock-like material under compression
    Lee, Jooeun
    Ha, Youn Doh
    Hong, Jung-Wuk
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 203 (1-2) : 211 - 236
  • [2] Crack coalescence morphology in rock-like material under compression
    Jooeun Lee
    Youn Doh Ha
    Jung-Wuk Hong
    International Journal of Fracture, 2017, 203 : 211 - 236
  • [3] Experimental and Numerical Study on Mixed Crack Propagation Characteristics in Rock-Like Material Under Uniaxial Loading
    X. Z. Sun
    H. L. Wang
    K. M. Liu
    X. C. Zhan
    C. Y. Jia
    Geotechnical and Geological Engineering, 2020, 38 : 191 - 199
  • [4] Experimental and Numerical Study on Mixed Crack Propagation Characteristics in Rock-Like Material Under Uniaxial Loading
    Sun, X. Z.
    Wang, H. L.
    Liu, K. M.
    Zhan, X. C.
    Jia, C. Y.
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (01) : 191 - 199
  • [5] Experimental and numerical study on crack propagation and coalescence in rock-like materials under compression
    Li, Xiaojing
    Bai, Yifan
    Chen, Xudong
    Zhao, Xinning
    Lv, Mingying
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2021, 56 (08): : 548 - 562
  • [6] Analysis of Crack Propagation Characteristics of Rock-like Material with Double Closed Cracks Under Uniaxial Compression
    Zhu, JiMing
    Yu, Hailing
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (06) : 6499 - 6509
  • [7] Analysis of Crack Propagation Characteristics of Rock-like Material with Double Closed Cracks Under Uniaxial Compression
    JiMing Zhu
    Hailing Yu
    Geotechnical and Geological Engineering, 2020, 38 : 6499 - 6509
  • [8] RETRACTED ARTICLE: Laboratory Study of Three-Dimensional Crack Propagation in Rock-Like Material Under Uniaxial Compression
    X. Z. Sun
    B. Shen
    Y. Y. Li
    B. L. Zhang
    N. Jiang
    Rock Mechanics and Rock Engineering, 2016, 49 : 4211 - 4211
  • [9] Experimental study of crack propagation of rock-like specimens containing conjugate fractures
    Sun, Wenbin
    Du, Houqian
    Zhou, Fei
    Shao, Jianli
    GEOMECHANICS AND ENGINEERING, 2019, 17 (04) : 323 - 331
  • [10] Experimental investigation of crack propagation and coalescence in rock-like materials under uniaxial compression
    Mirzaei, H.
    Kakaie, R.
    Jalali, S. M. E.
    Shariati, M.
    Hassani, B.
    ROCK MECHANICS IN CIVIL AND ENVIRONMENTAL ENGINEERING, 2010, : 251 - 254