Maximal degree subposets of ν-Tamari lattices

被引:0
|
作者
Dermenjian, Aram [1 ,2 ]
机构
[1] Univ Manchester, Dept Math, Manchester, England
[2] Heilbronn Inst Math Res Manchester, Manchester, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.37236/11571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study two different subposets of the v-Tamari lattice: one in which all elements have maximal in-degree and one in which all elements have maximal out-degree. The maximal in-degree and maximal out-degree of a v-Dyck path turns out to be the size of the maximal staircase shape path that fits weakly above v. For m-Dyck paths of height n, we further show that the maximal out-degree poset is poset isomorphic to the v-Tamari lattice of (m - 1)-Dyck paths of height n, and the maximal in-degree poset is poset isomorphic to the (m - 1)-Dyck paths of height n together with a greedy order. We show these two isomorphisms and give some properties on v-Tamari lattices along the way.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Motzkin subposets and Motzkin geodesics in Tamari lattices
    Baril, J. -L.
    Pallo, J. -M.
    INFORMATION PROCESSING LETTERS, 2014, 114 (1-2) : 31 - 37
  • [2] A recursion on maximal chains in the Tamari lattices
    Nelson, Luke
    DISCRETE MATHEMATICS, 2017, 340 (04) : 661 - 677
  • [3] ON TAMARI LATTICES
    GEYER, W
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 99 - 122
  • [4] Counting smaller elements in the Tamari and m-Tamari lattices
    Chatel, Gregory
    Pons, Viviane
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 134 : 58 - 97
  • [5] GEOMETRY OF ν-TAMARI LATTICES IN TYPES A AND B
    Ceballos, Cesar
    Padrol, Arnau
    Sarmiento, Camilo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2575 - 2622
  • [6] KP line solitons and Tamari lattices
    Dimakis, Aristophanes
    Mueller-Hoissen, Folkert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (02)
  • [7] Tamari lattices, forests and Thompson monoids
    Sunic, Zoran
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) : 1216 - 1238
  • [8] Parabolic Tamari Lattices in Linear Type B
    Fang, Wenjie
    Muhle, Henri
    Novelli, Jean-Christophe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [9] Tamari lattices and noncrossing partitions in type B
    Thomas, Hugh
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2711 - 2723
  • [10] The number of intervals in the m-Tamari lattices
    Bousquet-Melou, Mireille
    Fusy, Eric
    Preville-Ratelle, Louis-Francois
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 18 (02):