Maximal degree subposets of ν-Tamari lattices

被引:0
|
作者
Dermenjian, Aram [1 ,2 ]
机构
[1] Univ Manchester, Dept Math, Manchester, England
[2] Heilbronn Inst Math Res Manchester, Manchester, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.37236/11571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study two different subposets of the v-Tamari lattice: one in which all elements have maximal in-degree and one in which all elements have maximal out-degree. The maximal in-degree and maximal out-degree of a v-Dyck path turns out to be the size of the maximal staircase shape path that fits weakly above v. For m-Dyck paths of height n, we further show that the maximal out-degree poset is poset isomorphic to the v-Tamari lattice of (m - 1)-Dyck paths of height n, and the maximal in-degree poset is poset isomorphic to the (m - 1)-Dyck paths of height n together with a greedy order. We show these two isomorphisms and give some properties on v-Tamari lattices along the way.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Bent Functions of Maximal Degree
    Cesmelioglu, Ayca
    Meidl, Wilfried
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 1186 - 1190
  • [42] A surface of maximal canonical degree
    Yeung, Sai-Kee
    MATHEMATISCHE ANNALEN, 2017, 368 (3-4) : 1171 - 1189
  • [43] A surface of maximal canonical degree
    Sai-Kee Yeung
    Mathematische Annalen, 2017, 368 : 1171 - 1189
  • [44] Maximal sublattices and frattini sublattices of bounded lattices
    Adams, ME
    Freese, R
    Nation, JB
    Schmid, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 63 : 110 - 127
  • [45] Maximal residuated lattices with lifting boolean center
    George Georgescu
    Laurenţiu Leuştean
    Claudia Mureşan
    Algebra universalis, 2010, 63 : 83 - 99
  • [46] MAXIMAL-CHAINS AND ANTICHAINS IN BOOLEAN LATTICES
    DUFFUS, D
    SANDS, B
    WINKLER, P
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) : 197 - 205
  • [47] Fuzzy prime and maximal filters of residuated lattices
    Kadji, Albert
    Lele, Celestin
    Tonga, Marcel
    SOFT COMPUTING, 2017, 21 (08) : 1913 - 1922
  • [48] A MORDELL INEQUALITY FOR LATTICES OVER MAXIMAL ORDERS
    Vance, Stephanie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) : 3827 - 3839
  • [50] Lattices from maximal orders into quaternion algebras
    Alves, C.
    Belfiore, J. -C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 687 - 702