Maximal degree subposets of ν-Tamari lattices

被引:0
|
作者
Dermenjian, Aram [1 ,2 ]
机构
[1] Univ Manchester, Dept Math, Manchester, England
[2] Heilbronn Inst Math Res Manchester, Manchester, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.37236/11571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study two different subposets of the v-Tamari lattice: one in which all elements have maximal in-degree and one in which all elements have maximal out-degree. The maximal in-degree and maximal out-degree of a v-Dyck path turns out to be the size of the maximal staircase shape path that fits weakly above v. For m-Dyck paths of height n, we further show that the maximal out-degree poset is poset isomorphic to the v-Tamari lattice of (m - 1)-Dyck paths of height n, and the maximal in-degree poset is poset isomorphic to the (m - 1)-Dyck paths of height n together with a greedy order. We show these two isomorphisms and give some properties on v-Tamari lattices along the way.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Slim patch lattices as absolute retracts and maximal lattices
    Czedli, Gabor
    ALGEBRA UNIVERSALIS, 2024, 85 (03)
  • [22] Maximal and stochastic Galois lattices
    Diday, E
    Emilion, R
    DISCRETE APPLIED MATHEMATICS, 2003, 127 (02) : 271 - 284
  • [23] On maximal sublattices of finite lattices
    Schmid, J
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 151 - 159
  • [24] Maximal Chains in Bond Lattices
    Ahirwar, Shreya
    Fishel, Susanna
    Gya, Parikshita
    Harris, Pamela E.
    Pham, Nguyen
    Melendez, Andres R. Vindas
    Vo, Dan Khanh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [25] ON RELATIVE MAXIMAL IDEALS IN LATTICES
    KINUGAWA, S
    HASHIMOT.J
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (01): : 1 - &
  • [26] Subbundles of maximal degree
    Bigas, MTI
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 : 541 - 545
  • [27] Graphs of Maximal Energy with Fixed Maximal Degree
    Arizmendi, Octavio
    Fernandez Hidalgo, Jorge
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (03) : 531 - 539
  • [28] Simplicial elimination schemes, extremal lattices and maximal antichain lattices
    Morvan, M
    Nourine, L
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1996, 13 (02): : 159 - 173
  • [29] Maximal operators and BMO for Banach lattices
    Garcia-Cuerva, J
    Macias, RA
    Torrea, JL
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 585 - 609
  • [30] Maximal sublattices of finite distributive lattices
    Adams, ME
    Dwinger, P
    Schmid, J
    ALGEBRA UNIVERSALIS, 1996, 36 (04) : 488 - 504