We introduce new combinatorial objects, the interval-posets, that encode intervals of the Tamari lattice. We then find a combinatorial interpretation of the bilinear operator that appears in the functional equation of Tamari intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively computed from the bilinear operator on each tree T counts the number of trees smaller than T in the Tamari order. Then we show that a similar (m+1)-linear operator is also used in the functional equation of m-Tamari intervals. We explain how the m-Tamari lattices can be interpreted in terms of (m+1)-ary trees or a certain class of binary trees. We then use the interval-posets to recover the functional equation of m-Tamari intervals and to prove a generalized formula that counts the number of elements smaller than or equal to a given tree in the m-Tamari lattice. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Univ Manchester, Dept Math, Manchester, England
Heilbronn Inst Math Res Manchester, Manchester, EnglandUniv Manchester, Dept Math, Manchester, England
Dermenjian, Aram
ELECTRONIC JOURNAL OF COMBINATORICS,
2023,
30
(02):
机构:
Univ Vienna, Fac Math, Vienna, Austria
Univ Pierre & Marie Curie Paris 6, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Paris, France
Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, UMR 7586, Paris, FranceUniv Vienna, Fac Math, Vienna, Austria
Ceballos, Cesar
论文数: 引用数:
h-index:
机构:
Padrol, Arnau
Sarmiento, Camilo
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, Leipzig, GermanyUniv Vienna, Fac Math, Vienna, Austria