Counting smaller elements in the Tamari and m-Tamari lattices

被引:10
|
作者
Chatel, Gregory [1 ]
Pons, Viviane [2 ]
机构
[1] Univ Paris Est, Lab Informat Gaspard Monge, Marne La Vallee, France
[2] Univ Vienna, Fak Math, A-1010 Vienna, Austria
关键词
Binary trees; Tamari lattice; Tamari intervals; ALGEBRA; TREES;
D O I
10.1016/j.jcta.2015.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce new combinatorial objects, the interval-posets, that encode intervals of the Tamari lattice. We then find a combinatorial interpretation of the bilinear operator that appears in the functional equation of Tamari intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively computed from the bilinear operator on each tree T counts the number of trees smaller than T in the Tamari order. Then we show that a similar (m+1)-linear operator is also used in the functional equation of m-Tamari intervals. We explain how the m-Tamari lattices can be interpreted in terms of (m+1)-ary trees or a certain class of binary trees. We then use the interval-posets to recover the functional equation of m-Tamari intervals and to prove a generalized formula that counts the number of elements smaller than or equal to a given tree in the m-Tamari lattice. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 97
页数:40
相关论文
共 34 条
  • [1] The number of intervals in the m-Tamari lattices
    Bousquet-Melou, Mireille
    Fusy, Eric
    Preville-Ratelle, Louis-Francois
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 18 (02):
  • [2] The representation of the symmetric group on m-Tamari intervals
    Bousquet-Melou, Mireille
    Chapuy, Guillaume
    Preville-Ratelle, Louis-Francois
    ADVANCES IN MATHEMATICS, 2013, 247 : 309 - 342
  • [3] ON TAMARI LATTICES
    GEYER, W
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 99 - 122
  • [4] Meeting covered elements in v-Tamari lattices
    Defant, Colin
    ADVANCES IN APPLIED MATHEMATICS, 2022, 134
  • [5] A recursion on maximal chains in the Tamari lattices
    Nelson, Luke
    DISCRETE MATHEMATICS, 2017, 340 (04) : 661 - 677
  • [6] Maximal degree subposets of ν-Tamari lattices
    Dermenjian, Aram
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [7] GEOMETRY OF ν-TAMARI LATTICES IN TYPES A AND B
    Ceballos, Cesar
    Padrol, Arnau
    Sarmiento, Camilo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2575 - 2622
  • [8] KP line solitons and Tamari lattices
    Dimakis, Aristophanes
    Mueller-Hoissen, Folkert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (02)
  • [9] Tamari lattices, forests and Thompson monoids
    Sunic, Zoran
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) : 1216 - 1238
  • [10] Parabolic Tamari Lattices in Linear Type B
    Fang, Wenjie
    Muhle, Henri
    Novelli, Jean-Christophe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):