Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

被引:2
|
作者
Shi, Tian-Wei [1 ]
Chen, Ke-Jin [1 ]
Ren, Ling [2 ]
Cui, Wen-Hua [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Innovat & Entrepreneurship, Anshan 114051, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 02期
基金
中国国家自然科学基金;
关键词
Brain Computer Interface; Motor Imagery; Convolutional Neural Network; Quaternary Classification; CLASSIFICATION; SYSTEM;
D O I
10.5755/j01.itc.52.2.32873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the Asea Brown Boveri (ABB) Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to analyze the MI task intention from the preprocessed EEG signals. Therefore, the proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with existing research, the classification accuracy of this BCI system is increased by about 32%-35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 50 条
  • [41] Bipolar electrode selection for a motor imagery based brain-computer interface
    Lou, Bin
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    JOURNAL OF NEURAL ENGINEERING, 2008, 5 (03) : 342 - 349
  • [42] Design of electrode layout for motor imagery based brain-computer interface
    Wang, Y.
    Hong, B.
    Gao, X.
    Gao, S.
    ELECTRONICS LETTERS, 2007, 43 (10) : 557 - 558
  • [43] Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface
    Vasilyev, A. N.
    Liburkina, S. P.
    Kaplan, A. Ya.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2016, 66 (03) : 302 - 312
  • [44] BRAIN COMPUTER INTERFACE USING MOTOR IMAGERY AND FACIAL EXPRESSIONS TO CONTROL A MOBILE ROBOT
    Kuffuor, James
    Samanta, Biswanath
    PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 1, 2018,
  • [45] Brain Computer Interface Using Motor Imagery And Facial Expressions To Control A Mobile Robot
    Kuffuor, James
    Samanta, Biswanath
    IEEE SOUTHEASTCON 2018, 2018,
  • [46] Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery
    Vuckovic, Aleksandra
    Osuagwu, Bethel A.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (08) : 1586 - 1595
  • [47] Fast Robot Arm Control Based on Brain-computer Interface
    Wang, Jingjun
    Liu, Yadong
    Tang, Jingsheng
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 571 - 575
  • [48] Independent Component Analysis in a Motor Imagery Brain Computer Interface
    Rejer, Izabela
    Gorski, Pawel
    17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 126 - 131
  • [49] Classification of Four Class Motor Imagery for Brain Computer Interface
    Abdalsalam, Eltaf
    Yusoff, Mohd Zuki
    Kamel, Nidal
    Malik, Aamir Saeed
    Mahmoud, Dalia
    9TH INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING AND POWER APPLICATIONS: EMPOWERING RESEARCH AND INNOVATION, 2017, 398 : 297 - 305
  • [50] Asynchronous Brain-Computer Interface with Foot Motor Imagery
    Sun, Meng
    Akiyoshi, Hiroyuki
    Igasaki, Tomohiko
    Murayama, Nobuki
    2013 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING (CME), 2013, : 191 - 196