BRAIN COMPUTER INTERFACE USING MOTOR IMAGERY AND FACIAL EXPRESSIONS TO CONTROL A MOBILE ROBOT

被引:0
|
作者
Kuffuor, James [1 ]
Samanta, Biswanath [1 ]
机构
[1] Georgia Southern Univ, Dept Mech Engn, Statesboro, GA 30460 USA
关键词
Brain computer interface; common spatial patterns; electroencephalography; facial expression; independent component analysis; motor imagery; power spectral Density; support vector machine; EEG;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A study is presented on brain computer interface (BCI) using motor imagery (MI) and facial expressions to control a mobile robot. Traditionally, only MI signals are used in BCI applications. In this paper a hybrid approach of using both MI and facial expression stimulations for BCI is proposed. Electroencephalography (EEG) signals were acquired using a sensor system and processed for several MI and facial expressions to extract characteristic features. The features were used to train support vector machine (SVM) based classifiers and the trained classifiers were used to recognize test signals for correct identification of MI and facial expressions. A system was developed to implement the BCI using MI and facial expressions to control a mobile robot. Results of training using MI and facial expressions, individually and together are presented for comparison. The combined features from MI and facial expression stimulations were found to give performance similar to facial expressions but better than MI only.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Brain Computer Interface Using Motor Imagery And Facial Expressions To Control A Mobile Robot
    Kuffuor, James
    Samanta, Biswanath
    IEEE SOUTHEASTCON 2018, 2018,
  • [2] Robot Navigation Using a Brain Computer Interface Based on Motor Imagery
    Aljal, Majid
    Djemal, Ridha
    Ibrahim, Sutrisno
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2019, 39 (04) : 508 - 522
  • [3] Robot Navigation Using a Brain Computer Interface Based on Motor Imagery
    Majid Aljalal
    Ridha Djemal
    Sutrisno Ibrahim
    Journal of Medical and Biological Engineering, 2019, 39 : 508 - 522
  • [4] Control of a Mobile Robot Through Brain Computer Interface
    Jimenez Moreno, Robinson
    Rodriguez Aleman, Jorge
    INGE CUC, 2015, 11 (02) : 74 - 83
  • [5] Development of a Motor Imagery Based Brain-computer Interface for Humanoid Robot Control Applications
    Prakaksita, Narendra
    Kuo, Chen-Yun
    Kuo, Chung-Hsien
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 1607 - 1613
  • [6] Controlling an Anatomical Robot Hand Using the Brain-Computer Interface Based on Motor Imagery
    Herath, H. M. K. K. M. B.
    de Mel, W. R.
    ADVANCES IN HUMAN-COMPUTER INTERACTION, 2021, 2021
  • [7] Control of Robot Using a Brain Computer Interface
    Chembrammel, Pramod
    Sankaran, Naveen Kumar
    Kesavadas, Thenkurussi
    2014 IEEE VIRTUAL REALITY (VR), 2014, : 147 - 147
  • [8] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [9] Robot motion control using Brain Computer Interface
    Upadhyay, R.
    Kankar, P. K.
    Padhy, P. K.
    Gupta, V. K.
    2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND EMBEDDED SYSTEMS (CARE-2013), 2013,
  • [10] Towards Improving Motor Imagery Brain–Computer Interface Using Multimodal Speech Imagery
    Jigang Tong
    Zhengxing Xing
    Xiaoying Wei
    Chao Yue
    Enzeng Dong
    Shengzhi Du
    Zhe Sun
    Jordi Solé-Casals
    Cesar F. Caiafa
    Journal of Medical and Biological Engineering, 2023, 43 : 216 - 226