Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

被引:2
|
作者
Shi, Tian-Wei [1 ]
Chen, Ke-Jin [1 ]
Ren, Ling [2 ]
Cui, Wen-Hua [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Innovat & Entrepreneurship, Anshan 114051, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 02期
基金
中国国家自然科学基金;
关键词
Brain Computer Interface; Motor Imagery; Convolutional Neural Network; Quaternary Classification; CLASSIFICATION; SYSTEM;
D O I
10.5755/j01.itc.52.2.32873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the Asea Brown Boveri (ABB) Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to analyze the MI task intention from the preprocessed EEG signals. Therefore, the proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with existing research, the classification accuracy of this BCI system is increased by about 32%-35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 50 条
  • [21] Virtual Drone Control Using Brain-Computer Interface Based on Motor Imagery Brain Magnetic Fields
    Tan, Gaobo
    Gai, Jinming
    Guo, Ruihan
    Zhang, Guiying
    Lin, Qiang
    Hu, Zhenghui
    HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE, HBAI 2022, 2023, 1692 : 161 - 171
  • [22] MOTOR IMAGERY OF LOWER LIMBS MOVEMENTS TO CONTROL BRAIN-COMPUTER INTERFACE
    Bobrova, E. V.
    Reshetnikova, V. V.
    Frolov, A. A.
    Gerasimenko, Y. P.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2019, 69 (05) : 529 - 540
  • [23] Asynchronous Motor Imagery Brain-Computer Interface for Simulated Drone Control
    Choi, Jin Woo
    Kim, Byung Hyung
    Jo, Sungho
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 133 - 137
  • [24] Classifier Selection for Motor Imagery Brain Computer Interface
    Rejer, Izabela
    Burduk, Robert
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT (CISIM 2017), 2017, 10244 : 122 - 130
  • [25] Extending Motor Imagery by Speech Imagery for Brain-Computer Interface
    Wang, Li
    Zhang, Xiong
    Zhang, Yu
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 7056 - 7059
  • [26] Low-Cost Robotic Guide Based on a Motor Imagery Brain-Computer Interface for Arm Assisted Rehabilitation
    Quiles, Eduardo
    Suay, Ferran
    Candela, Gemma
    Chio, Nayibe
    Jimenez, Manuel
    Alvarez-Kurogi, Leandro
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (03)
  • [27] Phase Transition in previous Motor Imagery affects Efficiency of Motor Imagery based Brain-computer Interface
    Jung, Min-Kyung
    Lee, Seho
    Wang, In-Nea
    Song, Ha-Yoon
    Kim, Hakseung
    Kim, Dong-Joo
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 333 - 336
  • [28] A Self-Paced Motor Imagery Based Brain-Computer Interface for Robotic Wheelchair Control
    Tsui, Chun Sing Louis
    Gan, John Q.
    Hu, Huosheng
    CLINICAL EEG AND NEUROSCIENCE, 2011, 42 (04) : 225 - 229
  • [29] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [30] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)