Meshfree-based physics-informed neural networks for the unsteady Oseen equations

被引:0
|
作者
Peng, Keyi [1 ]
Yue, Jing [2 ]
Zhang, Wen [2 ]
Li, Jian [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
physics-informed neural networks; the unsteady Oseen equation; convergence; small sample learning; FINITE-ELEMENT-METHOD; ALGORITHM;
D O I
10.1088/1674-1056/ac9cb9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations. Firstly, based on the ideas of meshfree and small sample learning, we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh. Specifically, we optimize the neural network by minimizing the loss function to satisfy the differential operators, initial condition and boundary condition. Then, we prove the convergence of the loss function and the convergence of the neural network. In addition, the feasibility and effectiveness of the method are verified by the results of numerical experiments, and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [22] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [23] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [24] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [25] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [26] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [27] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [28] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [29] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [30] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,