Machine learning and the quest for objectivity in climate model parameterization

被引:5
|
作者
Jebeile, Julie [1 ,2 ,3 ]
Lam, Vincent [1 ,2 ,4 ]
Majszak, Mason [1 ,2 ]
Raz, Tim [1 ]
机构
[1] Univ Bern, Inst Philosophy, Langgassstr 49a, CH-3012 Bern, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, Hochschulstr 6, CH-3012 Bern, Switzerland
[3] CNRS, Ctr Natl Rech Meteorol, CNRM UMR 3589, Meteo France, Toulouse, France
[4] Univ Queensland, Sch Hist & Philosoph Inquiry, St Lucia, Qld 4072, Australia
基金
瑞士国家科学基金会;
关键词
Climate modeling; Parameterizations; Parameter tuning; Objectivity; Subjectivity; Expert judgement; Machine learning; Deep neural networks; Gaussian processes;
D O I
10.1007/s10584-023-03532-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Parameterization and parameter tuning are central aspects of climate modeling, and there is widespread consensus that these procedures involve certain subjective elements. Even if the use of these subjective elements is not necessarily epistemically problematic, there is an intuitive appeal for replacing them with more objective (automated) methods, such as machine learning. Relying on several case studies, we argue that, while machine learning techniques may help to improve climate model parameterization in several ways, they still require expert judgment that involves subjective elements not so different from the ones arising in standard parameterization and tuning. The use of machine learning in parameterizations is an art as well as a science and requires careful supervision.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Simplified Climate Change Model and Extreme Weather Model Based on a Machine Learning Method
    Ren, Xiaobin
    Li, Lianyan
    Yu, Yang
    Xiong, Zhihua
    Yang, Shunzhou
    Du, Wei
    Ren, Mengjia
    SYMMETRY-BASEL, 2020, 12 (01):
  • [42] REALITY - THE SEARCH FOR OBJECTIVITY OR THE QUEST FOR A COMPELLING ARGUMENT
    MATURANA, HR
    IRISH JOURNAL OF PSYCHOLOGY, 1988, 9 (01): : 25 - 82
  • [43] 35 USC SECTION 103 - A QUEST FOR OBJECTIVITY
    COLAIANNI, JV
    FEDERAL BAR JOURNAL, 1980, 39 (1-2): : 23 - 36
  • [44] Parameterization of empirical forcefields for glassy silica using machine learning
    Han Liu
    Zipeng Fu
    Yipeng Li
    Nazreen Farina Ahmad Sabri
    Mathieu Bauchy
    MRS Communications, 2019, 9 : 593 - 599
  • [45] A two-moment machine learning parameterization of the autoconversion process
    Alfonso, Lester
    Maria Zamora, Jose
    ATMOSPHERIC RESEARCH, 2021, 249
  • [46] Implied volatility parameterization based on a machine learning polynomial approach
    Jobejarkol, Mostafa Pouralizadeh
    Badamchizadeh, Abdolrahim
    Morales, Manuel
    INTELLIGENT DATA ANALYSIS, 2018, 22 (05) : 1127 - 1141
  • [47] Machine Learning as Applied to Shape Parameterization of Submerged Arch Structures
    Hugo LLamosas-Mayca, Waldemar
    Lorente-Ramos, Eugenio
    Perez-Aracil, Jorge
    Hernandez-Diaz, Alejandro M.
    Damian Garcia-Roman, Manuel
    Salcedo-Sanz, Sancho
    BIOINSPIRED SYSTEMS FOR TRANSLATIONAL APPLICATIONS: FROM ROBOTICS TO SOCIAL ENGINEERING, PT II, IWINAC 2024, 2024, 14675 : 333 - 344
  • [48] Parameterization of empirical forcefields for glassy silica using machine learning
    Liu, Han
    Fu, Zipeng
    Li, Yipeng
    Sabri, Nazreen Farina Ahmad
    Bauchy, Mathieu
    MRS COMMUNICATIONS, 2019, 9 (02) : 593 - 599
  • [49] Parameterization of Stochastically Entraining Convection Using Machine Learning Technique
    Shin, Jihoon
    Baik, Jong-Jin
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (05)
  • [50] Seepage, objectivity, and climate science
    O'Loughlin, Ryan
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2020, 81 : 74 - 81