Parameterization of empirical forcefields for glassy silica using machine learning

被引:0
|
作者
Han Liu
Zipeng Fu
Yipeng Li
Nazreen Farina Ahmad Sabri
Mathieu Bauchy
机构
[1] University of California,Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering
[2] University of California,Department of Computer Science
来源
MRS Communications | 2019年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The development of reliable, yet computationally efficient interatomic forcefields is key to facilitate the modeling of glasses. However, the parameterization of novel forcefields is challenging as the high number of parameters renders traditional optimization methods inefficient or subject to bias. Here, we present a new parameterization method based on machine learning, which combines ab initio molecular dynamics simulations and Bayesian optimization. By taking the example of glassy silica, we show that our method yields a new interatomic forcefield that offers an unprecedented agreement with ab initio simulations. This method offers a new route to efficiently parameterize new interatomic forcefields for disordered solids in a non-biased fashion.
引用
收藏
页码:593 / 599
页数:6
相关论文
共 50 条
  • [1] Parameterization of empirical forcefields for glassy silica using machine learning
    Liu, Han
    Fu, Zipeng
    Li, Yipeng
    Sabri, Nazreen Farina Ahmad
    Bauchy, Mathieu
    MRS COMMUNICATIONS, 2019, 9 (02) : 593 - 599
  • [2] Balance between accuracy and simplicity in empirical forcefields for glass modeling: Insights from machine learning
    Liu, Han
    Fu, Zipeng
    Li, Yipeng
    Sabri, Nazreen Farina Ahmad
    Bauchy, Mathieu
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 515 : 133 - 142
  • [3] Exploring the landscape of Buckingham potentials for silica by machine learning: Soft vs hard interatomic forcefields
    Liu, Han
    Li, Yipeng
    Fu, Zipeng
    Li, Kevin
    Bauchy, Mathieu
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (05):
  • [4] Interatomic potential parameterization using particle swarm optimization: Case study of glassy silica
    Christensen, Rasmus
    Sorensen, Soren S.
    Liu, Han
    Li, Kevin
    Bauchy, Mathieu
    Smedskjaer, Morten M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (13):
  • [5] Parameterization of Stochastically Entraining Convection Using Machine Learning Technique
    Shin, Jihoon
    Baik, Jong-Jin
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (05)
  • [6] Roadmap on machine learning glassy dynamics
    Jung, Gerhard
    Alkemade, Rinske M.
    Bapst, Victor
    Coslovich, Daniele
    Filion, Laura
    Landes, Francois P.
    Liu, Andrea J.
    Pezzicoli, Francesco Saverio
    Shiba, Hayato
    Volpe, Giovanni
    Zamponi, Francesco
    Berthier, Ludovic
    Biroli, Giulio
    NATURE REVIEWS PHYSICS, 2025, 7 (02) : 91 - 104
  • [7] An empirical staging model for schizophrenia using machine learning
    Clara, M. -C.
    Sanchez-Lasheras, F.
    Garcia-Fernandez, A.
    Gonzalez-Blanco, L.
    Saiz, P. A.
    Bobes, J.
    Garcia-Portilla, M. P.
    EUROPEAN PSYCHIATRY, 2023, 66 : S626 - S627
  • [8] Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization
    Christopoulos, Costa
    Lopez-Gomez, Ignacio
    Beucler, Tom
    Cohen, Yair
    Kawczynski, Charles
    Dunbar, Oliver R. A.
    Schneider, Tapio
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (11)
  • [9] Empirical Study on Malicious URL Detection Using Machine Learning
    Patgiri, Ripon
    Katari, Hemanth
    Kumar, Ronit
    Sharma, Dheeraj
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY, ICDCIT 2019, 2019, 11319 : 380 - 388
  • [10] An empirical research on sentiment analysis using machine learning approaches
    Kabir M.
    Kabir M.M.J.
    Xu S.
    Badhon B.
    International Journal of Computers and Applications, 2021, 43 (10) : 1011 - 1019