Interatomic potential parameterization using particle swarm optimization: Case study of glassy silica

被引:9
|
作者
Christensen, Rasmus [1 ]
Sorensen, Soren S. [1 ]
Liu, Han [2 ]
Li, Kevin [2 ]
Bauchy, Mathieu [2 ]
Smedskjaer, Morten M. [1 ]
机构
[1] Aalborg Univ, Dept Chem & Biosci, Aalborg, Denmark
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 154卷 / 13期
基金
美国国家科学基金会;
关键词
EMPIRICAL FORCEFIELDS; MOLECULAR-DYNAMICS; SIO2;
D O I
10.1063/5.0041183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Classical molecular dynamics simulations of glassy materials rely on the availability of accurate yet computationally efficient interatomic force fields. The parameterization of new potentials remains challenging due to the non-convex nature of the accompanying optimization problem, which renders the traditional optimization methods inefficient or subject to bias. In this study, we present a new parameterization method based on particle swarm optimization (PSO), which is a stochastic population-based optimization method. Using glassy silica as a case study, we introduce two interatomic potentials using PSO, which are parameterized so as to match structural features obtained from ab initio simulations and experimental neutron diffraction data. We find that the PSO algorithm is highly efficient at searching for and identifying viable potential parameters that reproduce the structural features used as the target in the parameterization. The presented approach is very general and can be easily applied to other interatomic potential parameterization schemes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Parameterization of Interatomic Potential by Genetic Algorithms: A Case Study
    Ghosh, Partha S.
    Ranawat, Y. S.
    Arya, A.
    Dey, G. K.
    PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
  • [2] Automatized Parameterization of DFTB Using Particle Swarm Optimization
    Chou, Chien-Pin
    Nishimura, Yoshifumi
    Fan, Chin-Chai
    Mazur, Grzegorz
    Irle, Stephan
    Witek, Henryk A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (01) : 53 - 64
  • [3] Marketing segmentation using the particle swarm optimization algorithm: a case study
    Chan, Chu Chai Henry
    Hwang, Ying-Rown
    Wu, Hsin-Chieh
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2016, 7 (06) : 855 - 863
  • [4] Marketing segmentation using the particle swarm optimization algorithm: a case study
    Chu Chai Henry Chan
    Ying-Rown Hwang
    Hsin-Chieh Wu
    Journal of Ambient Intelligence and Humanized Computing, 2016, 7 : 855 - 863
  • [5] Neural Network Training Using Particle Swarm Optimization - a Case Study
    Kaminski, Marcin
    2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, : 115 - 120
  • [6] Inverse Modeling of Nonlinear Artificial Muscle Using Polynomial Parameterization and Particle Swarm Optimization
    Mat Dzahir, Mohd Azuwan
    Yamamoto, Shin-ichiroh
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [7] Tight binding parameterization through particle swarm optimization algorithm
    Di Vito, A.
    Pecchia, A.
    der Maur, M. Auf
    Di Carlo, A.
    2020 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2020, : 113 - 114
  • [8] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +
  • [9] Particle swarm optimization for sequencing problems: A case study
    Cagnina, L
    Esquivel, S
    Gallard, R
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 536 - 541
  • [10] Parameterization of empirical forcefields for glassy silica using machine learning
    Liu, Han
    Fu, Zipeng
    Li, Yipeng
    Sabri, Nazreen Farina Ahmad
    Bauchy, Mathieu
    MRS COMMUNICATIONS, 2019, 9 (02) : 593 - 599