Machine learning and the quest for objectivity in climate model parameterization

被引:5
|
作者
Jebeile, Julie [1 ,2 ,3 ]
Lam, Vincent [1 ,2 ,4 ]
Majszak, Mason [1 ,2 ]
Raz, Tim [1 ]
机构
[1] Univ Bern, Inst Philosophy, Langgassstr 49a, CH-3012 Bern, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, Hochschulstr 6, CH-3012 Bern, Switzerland
[3] CNRS, Ctr Natl Rech Meteorol, CNRM UMR 3589, Meteo France, Toulouse, France
[4] Univ Queensland, Sch Hist & Philosoph Inquiry, St Lucia, Qld 4072, Australia
基金
瑞士国家科学基金会;
关键词
Climate modeling; Parameterizations; Parameter tuning; Objectivity; Subjectivity; Expert judgement; Machine learning; Deep neural networks; Gaussian processes;
D O I
10.1007/s10584-023-03532-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Parameterization and parameter tuning are central aspects of climate modeling, and there is widespread consensus that these procedures involve certain subjective elements. Even if the use of these subjective elements is not necessarily epistemically problematic, there is an intuitive appeal for replacing them with more objective (automated) methods, such as machine learning. Relying on several case studies, we argue that, while machine learning techniques may help to improve climate model parameterization in several ways, they still require expert judgment that involves subjective elements not so different from the ones arising in standard parameterization and tuning. The use of machine learning in parameterizations is an art as well as a science and requires careful supervision.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Parameterization of the Company's Business Model for Machine Learning-Based Marketing Stress Testing
    Menkova, Krystyna
    Zozulov, Oleksandr
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (02): : 318 - 326
  • [32] A Machine Learning-based Hybrid Model for Fracture Parameterization and Distribution Prediction in Unconventional Reservoirs
    Liu, Tian
    Zhang, Ruxin
    COMPUTERS AND GEOTECHNICS, 2024, 168
  • [33] Machine learning for the physics of climate
    Bracco, Annalisa
    Brajard, Julien
    Dijkstra, Henk A.
    Hassanzadeh, Pedram
    Lessig, Christian
    Monteleoni, Claire
    NATURE REVIEWS PHYSICS, 2025, 7 (01) : 6 - 20
  • [34] Statistical Analysis of CloudSat Data for Climate Model Parameterization
    Lee, Seungwon
    Kahn, Brian H.
    Teixeira, Joao
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [35] Parameterization of contrails in the UK Met Office Climate Model
    Rap, A.
    Forster, P. M.
    Jones, A.
    Boucher, O.
    Haywood, J. M.
    Bellouin, N.
    De Leon, R. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [36] Influence of a Salt Plume Parameterization in a Coupled Climate Model
    Sidorenko, D.
    Koldunov, N. V.
    Wang, Q.
    Danilov, S.
    Goessling, H. F.
    Gurses, O.
    Scholz, P.
    Sein, D. V.
    Volodin, E.
    Wekerle, C.
    Jung, T.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (09): : 2357 - 2373
  • [37] CLIMATE MODEL SENSITIVITY TO SEA ICE ALBEDO PARAMETERIZATION
    MORASSUTTI, MP
    THEORETICAL AND APPLIED CLIMATOLOGY, 1991, 44 (01) : 25 - 36
  • [38] ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning
    Kaltenborn, Julia
    Lange, Charlotte Emilie Elektra
    Ramesh, Venkatesh
    Brouillard, Philippe
    Gurwicz, Yaniv
    Nagda, Chandni
    Runge, Jakob
    Nowack, Peer
    Rolnick, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Combined climate and regional mosquito habitat model based on machine learning
    Wieland, Ralf
    Kuhls, Katrin
    Lentz, Hartmut H. K.
    Conraths, Franz
    Kampen, Helge
    Werner, Doreen
    ECOLOGICAL MODELLING, 2021, 452
  • [40] PROPOSED SEC RULE 146 - QUEST FOR OBJECTIVITY
    不详
    FORDHAM LAW REVIEW, 1973, 41 (04) : 887 - 920