Symmetry and monotonicity property of a solution of (p, q) Laplacian equation with singular terms

被引:0
|
作者
Jana, Ritabrata [1 ]
机构
[1] Indian Inst Sci Educ & Res, Sch Math, IISER TVM, Maruthamala PO, Thiruvananthapuram 695551, Kerala, India
来源
关键词
Moving plane method; symmetry of solutions; singular quasilinear equations; ELLIPTIC-EQUATIONS; REGULARITY;
D O I
10.4171/ZAA/1746
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the behavior of a positive solution u is an element of C-1,C-alpha(B-R(x(0)))($$$) over bar of the (p, q) Laplace equation with a singular term and zero Dirichlet boundary condition. Specifically, we consider the equation {-div(|del u|(p-2)del u + a(x)|del u|(q-2)del u) = g(x)/u(delta) + h(x) f(u) in B-R(x(0)), {u = 0 on partial derivative B-R(x(0)). We assume that 0 < delta < 1, 1 < p <= q < infinity, and f is a C-1(R) nondecreasing function. Our analysis uses the moving plane method to investigate the symmetry and monotonicity properties of u. Additionally, we establish a strong comparison principle for solutions of the (p, q) Laplace equation with radial symmetry under the assumptions that 1 < p <= q <= 2 and f = 1.
引用
收藏
页码:483 / 502
页数:20
相关论文
共 50 条
  • [21] VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH SINGULAR NONLINEAR TERMS
    Liu, Fang
    Sun, Hong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 117 (03) : 345 - 374
  • [22] ON SUBLINEAR SINGULAR (P,Q) LAPLACIAN PROBLEMS
    Alreshidi, B.
    Hai, D. D.
    Shivaji, R.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (09) : 2773 - 2783
  • [23] Weighted p(•)-Laplacian problem with nonlinear singular terms
    Igbida, J.
    Elharrar, N.
    Talibi, H.
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 45 - 62
  • [24] On a Singular Logistic Equation with the p-Laplacian
    Hai, Dang Dinh
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (03): : 339 - 348
  • [25] Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator
    Cao, Linfen
    Kang, Xianwen
    Dai, Zhaohui
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (03)
  • [26] A weak solution for a (p(x), q(x))-Laplacian elliptic problem with a singular term
    Mahshid, MirKeysaan
    Razani, Abdolrahman
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01):
  • [27] Positive solution for a class of p&q-singular elliptic equation
    Correa, Francisco Julio S. A.
    Correa, Amanda S. S.
    Figueiredo, Giovany M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 16 : 163 - 169
  • [28] Existence and non-existence of a positive solution for (p, q)-Laplacian with singular weights
    Zerouali, Abdellah
    Karim, Belhadj
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 147 - 167
  • [29] Symmetry results for the p(x)-Laplacian equation
    Montoro, Luigi
    Sciunzi, Berardino
    Squassina, Marco
    ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (01) : 43 - 64
  • [30] Positive periodic solution for indefinite singular Liénard equation with p-Laplacian
    Tiantian Zhou
    Bo Du
    Haiqing Du
    Advances in Difference Equations, 2019