Symmetry and monotonicity property of a solution of (p, q) Laplacian equation with singular terms

被引:0
|
作者
Jana, Ritabrata [1 ]
机构
[1] Indian Inst Sci Educ & Res, Sch Math, IISER TVM, Maruthamala PO, Thiruvananthapuram 695551, Kerala, India
来源
关键词
Moving plane method; symmetry of solutions; singular quasilinear equations; ELLIPTIC-EQUATIONS; REGULARITY;
D O I
10.4171/ZAA/1746
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the behavior of a positive solution u is an element of C-1,C-alpha(B-R(x(0)))($$$) over bar of the (p, q) Laplace equation with a singular term and zero Dirichlet boundary condition. Specifically, we consider the equation {-div(|del u|(p-2)del u + a(x)|del u|(q-2)del u) = g(x)/u(delta) + h(x) f(u) in B-R(x(0)), {u = 0 on partial derivative B-R(x(0)). We assume that 0 < delta < 1, 1 < p <= q < infinity, and f is a C-1(R) nondecreasing function. Our analysis uses the moving plane method to investigate the symmetry and monotonicity properties of u. Additionally, we establish a strong comparison principle for solutions of the (p, q) Laplace equation with radial symmetry under the assumptions that 1 < p <= q <= 2 and f = 1.
引用
收藏
页码:483 / 502
页数:20
相关论文
共 50 条
  • [31] MULTIPLE POSITIVE SOLUTIONS FOR A (p, q)-LAPLACE EQUATION INVOLVING SINGULAR AND CRITICAL TERMS
    Guo, Liu-Tao
    Suo, Hong-Min
    Chu, Chang-Mu
    Lei, Chun-Yu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (04) : 1169 - 1189
  • [32] Monotonicity and symmetry of positive solution for 1-Laplace equation
    Zhao, Lin
    AIMS MATHEMATICS, 2021, 6 (06): : 6255 - 6277
  • [33] Existence of a nontrivial solution for a (p,q)-Laplacian equation with p-critical exponent in RN
    Marcio F Chaves
    Grey Ercole
    Olimpio H Miyagaki
    Boundary Value Problems, 2014
  • [34] Existence of a nontrivial solution for a (p, q)-Laplacian equation with p-critical exponent in RN
    Chaves, Marcio F.
    Ercole, Grey
    Miyagaki, Olimpio H.
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 15
  • [35] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 325 - 345
  • [36] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    Mathematische Zeitschrift, 2022, 300 : 325 - 345
  • [37] SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATION IN Rn
    Liu, Xiangqing
    Guo, Yuxia
    Liu, Jiaquan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (04) : 597 - 613
  • [38] SINGULAR SOLUTIONS FOR THE DIFFERENTIAL EQUATION WITH p-LAPLACIAN
    Bartusek, Miroslav
    ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 123 - 128
  • [39] Singular limit of solutions of the p-Laplacian equation
    Yi, Q
    Zhao, JN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (06) : 733 - 741
  • [40] Singular limit of solutions of the p-Laplacian equation
    Qing, Yi
    Junning, Zhao
    Nonlinear Analysis, Theory, Methods and Applications, 2001, 43 (06): : 733 - 741