Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming

被引:3
|
作者
Andreani, Roberto [1 ]
Fukuda, Ellen H. [2 ]
Haeser, Gabriel [3 ]
Santos, Daiana O. [4 ]
Secchin, Leonardo D. [5 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[3] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[4] Univ Fed Sao Paulo, Paulista Sch Polit Econ & Business, Osasco, SP, Brazil
[5] Univ Fed Espirito Santo, Dept Appl Math, Sao Mateus, ES, Brazil
基金
日本学术振兴会;
关键词
Second-order cones; Symmetric cones; Optimality conditions; Constraint qualifications; Augmented Lagrangian method; OPTIMIZATION METHODS; GRADIENT DESCENT;
D O I
10.1007/s10957-023-02338-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semi-definite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson's constraint qualification. In addition, we show the relationship of both optimality conditions in the context of NSOCP, where we also present an augmented Lagrangian method with global convergence to a KKT point under a condition weaker than Robinson's constraint qualification.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [41] Perturbation analysis of second-order cone programming problems
    J. Frédéric Bonnans
    Héctor Ramírez C.
    Mathematical Programming, 2005, 104 : 205 - 227
  • [42] Stochastic second-order cone programming: Applications models
    Alzalg, Baha M.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5122 - 5134
  • [43] Perturbation analysis of second-order cone programming problems
    Bonnans, JF
    Ramírez, CH
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 205 - 227
  • [44] IDG accommodation based on second-order cone programming
    Xing H.
    Cheng H.
    Zeng P.
    Zhang Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (06): : 74 - 80
  • [45] Restoration of matrix fields by second-order cone programming
    Steidl, G.
    Setzer, S.
    Popilka, B.
    Burgeth, B.
    COMPUTING, 2007, 81 (2-3) : 161 - 178
  • [46] A pivoting procedure for a class of second-order cone programming
    Muramatsu, M
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (02): : 295 - 314
  • [47] A Variant of the Simplex Method for Second-Order Cone Programming
    Zhadan, Vitaly
    MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH, 2019, 11548 : 115 - 129
  • [48] Descent Property in Sequential Second-Order Cone Programming for Nonlinear Trajectory Optimization
    Xie, Lei
    Zhou, Xiang
    Zhang, Hong-Bo
    Tang, Guo-Jian
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2023, 46 (12) : 2346 - 2361
  • [49] Design of nonlinear-phase FIR filters with second-order cone programming
    Coleman, JO
    Scholnik, DP
    42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 409 - 412
  • [50] An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming
    Auslender, Alfred
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (02) : 183 - 212