Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming

被引:3
|
作者
Andreani, Roberto [1 ]
Fukuda, Ellen H. [2 ]
Haeser, Gabriel [3 ]
Santos, Daiana O. [4 ]
Secchin, Leonardo D. [5 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[3] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[4] Univ Fed Sao Paulo, Paulista Sch Polit Econ & Business, Osasco, SP, Brazil
[5] Univ Fed Espirito Santo, Dept Appl Math, Sao Mateus, ES, Brazil
基金
日本学术振兴会;
关键词
Second-order cones; Symmetric cones; Optimality conditions; Constraint qualifications; Augmented Lagrangian method; OPTIMIZATION METHODS; GRADIENT DESCENT;
D O I
10.1007/s10957-023-02338-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semi-definite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson's constraint qualification. In addition, we show the relationship of both optimality conditions in the context of NSOCP, where we also present an augmented Lagrangian method with global convergence to a KKT point under a condition weaker than Robinson's constraint qualification.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [31] Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming
    Roberto Andreani
    Gabriel Haeser
    Leonardo M. Mito
    C. Héctor Ramírez
    Thiago P. Silveira
    Journal of Optimization Theory and Applications, 2022, 195 : 42 - 78
  • [32] Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming
    Andreani, Roberto
    Haeser, Gabriel
    Mito, Leonardo M.
    Hector Ramirez, C.
    Silveira, Thiago P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (01) : 42 - 78
  • [33] On strong and weak second-order necessary optimality conditions for nonlinear programming
    Minchenko, L.
    Leschov, A.
    OPTIMIZATION, 2016, 65 (09) : 1693 - 1702
  • [34] Second-order sufficient optimality conditions for local and global nonlinear programming
    Neumaier, A
    JOURNAL OF GLOBAL OPTIMIZATION, 1996, 9 (02) : 141 - 151
  • [35] Entry Trajectory Optimization by Second-Order Cone Programming
    Liu, Xinfu
    Shen, Zuojun
    Lu, Ping
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (02) : 227 - 241
  • [36] Embedded Second-Order Cone Programming with Radar Applications
    Mountcastle, Paul
    Henretty, Tom
    Naqvi, Aale
    Lethin, Richard
    2015 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2015,
  • [37] Code Generation for Embedded Second-Order Cone Programming
    Chu, Eric
    Parikh, Neal
    Domahidi, Alexander
    Boyd, Stephen
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1547 - 1552
  • [38] Restoration of matrix fields by second-order cone programming
    G. Steidl
    S. Setzer
    B. Popilka
    B. Burgeth
    Computing, 2007, 81 : 161 - 178
  • [39] Feature Scaling via Second-Order Cone Programming
    Liang, Zhizheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [40] A Combined Newton Method for Second-Order Cone Programming
    Chi, Xiaoni
    Peng, Jin
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 605 - 612