Perturbation analysis of second-order cone programming problems

被引:1
|
作者
J. Frédéric Bonnans
Héctor Ramírez C.
机构
[1] INRIA Rocquencourt,Projet Sydoco
[2] Universidad de Chile & Centre for Mathematical Modelling,Department of Mathematical Engineering
[3] UMR 2071,undefined
[4] Universidad de Chile-CNRS. Casilla 170-3 Santiago 3,undefined
[5] Chile&INRIA,undefined
来源
Mathematical Programming | 2005年 / 104卷
关键词
Optimality Condition; Mathematical Method; Programming Problem; Order Optimality; Perturbation Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss first and second order optimality conditions for nonlinear second-order cone programming problems, and their relation with semidefinite programming problems. For doing this we extend in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in terms of second order optimality conditions. This is the first time such a characterization is given for a nonpolyhedral conic problem.
引用
收藏
页码:205 / 227
页数:22
相关论文
共 50 条
  • [1] Perturbation analysis of second-order cone programming problems
    Bonnans, JF
    Ramírez, CH
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 205 - 227
  • [2] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [3] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116
  • [4] A PERTURBATION APPROACH FOR AN INVERSE LINEAR SECOND-ORDER CONE PROGRAMMING
    Zhang, Yi
    Jiang, Yong
    Zhang, Liwei
    Zhang, Jiangzhong
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (01) : 171 - 189
  • [5] A second-order sequential optimality condition for nonlinear second-order cone programming problems
    Ellen H. Fukuda
    Kosuke Okabe
    Computational Optimization and Applications, 2025, 90 (3) : 911 - 939
  • [6] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [7] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [8] Applications of second-order cone programming
    Lobo, MS
    Vandenberghe, L
    Boyd, S
    Lebret, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) : 193 - 228
  • [9] Second-order cone programming formulations for a class of problems in structural optimization
    Athanasios Makrodimopoulos
    Atul Bhaskar
    Andy J. Keane
    Structural and Multidisciplinary Optimization, 2010, 40 : 365 - 380
  • [10] On the existence of saddle points for nonlinear second-order cone programming problems
    Jinchuan Zhou
    Jein-Shan Chen
    Journal of Global Optimization, 2015, 62 : 459 - 480