An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method

被引:1
|
作者
Tan, Yi [1 ]
Yu, Xianglin [2 ]
Zhang, Zhigang [3 ]
Tian, Jialin [2 ]
Feng, Na [1 ]
Tang, Chuanhong [1 ]
Zou, Gen [1 ]
Zhang, Jingsong [1 ]
机构
[1] Shanghai Acad Agr Sci, Inst Edible Fungi, Natl Engn Res Ctr Edible Fungi, Shanghai 201403, Peoples R China
[2] Shanghai Ocean Univ, Coll Food Sci & Technol, Shanghai 201306, Peoples R China
[3] Shanghai Normal Univ, Coll Life Sci, Shanghai 200234, Peoples R China
关键词
Ganoderma lucidum; CRISPR/Cas9; genome editing; ribonucleoproteins (RNPs); the orotidine 5 & PRIME; -monophosphate decarboxylase gene (ura3); TRITON X-100; MUSHROOM; PHASE;
D O I
10.3390/jof9121170
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar 'Hunong No. 1'. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5 '-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10-569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The CRISPR/Cas9 system for plant genome editing and beyond
    Bortesi, Luisa
    Fischer, Rainer
    BIOTECHNOLOGY ADVANCES, 2015, 33 (01) : 41 - 52
  • [22] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    Journal of Genetics and Genomics, 2016, 43 (05) : 227 - 228
  • [23] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    Kulishova, L. M.
    Vokhtantsev, I. P.
    Kim, D. V.
    Zharkov, D. O.
    MOLECULAR BIOLOGY, 2023, 57 (02) : 258 - 271
  • [24] Editing the human cytomegalovirus genome with the CRISPR/Cas9 system
    King, Melvin W.
    Munger, Joshua
    VIROLOGY, 2019, 529 : 186 - 194
  • [25] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    L. M. Kulishova
    I. P. Vokhtantsev
    D. V. Kim
    D. O. Zharkov
    Molecular Biology, 2023, 57 : 258 - 271
  • [26] CRISPR/Cas9 and Genome Editing in Drosophila
    Andrew R.Bassett
    Ji-Long Liu
    Journal of Genetics and Genomics, 2014, 41 (01) : 7 - 19
  • [27] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [28] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19
  • [29] The CRISPR/Cas9 Genome Editing Revolution
    Jiao, Renjie
    Gao, Caixia
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) : 227 - 228
  • [30] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41