CRISPR/Cas9 genome editing in wheat

被引:0
|
作者
Dongjin Kim
Burcu Alptekin
Hikmet Budak
机构
[1] Montana State University,Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology
来源
关键词
Wheat; Genome editing; CRISPR/Cas9;
D O I
暂无
中图分类号
学科分类号
摘要
Genome editing has been a long-term challenge for molecular biology research, particularly for plants possess complex genome. The recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile tool for genome editing which enables editing of multiple genes based on the guidance of small RNAs. Even though the efficiency of CRISPR/Cas9 system has been shown with several studies from diploid plants, its application remains a challenge for plants with polyploid and complex genome. Here, we applied CRISPR/Cas9 genome editing system in wheat protoplast to conduct the targeted editing of stress-responsive transcription factor genes, wheat dehydration responsive element binding protein 2 (TaDREB2) and wheat ethylene responsive factor 3 (TaERF3). Targeted genome editing of TaDREB2 and TaERF3 was achieved with transient expression of small guide RNA and Cas9 protein in wheat protoplast.  The effectiveness of mutagenesis in wheat protoplast was confirmed with restriction enzyme digestion assay, T7 endonuclease assay, and sequencing. Furthermore, several off-target regions for designed sgRNAs were analyzed, and the specificity of genome editing was confirmed with amplicon sequencing. Overall results suggested that CRISPR/Cas9 genome editing system can easily be established on wheat protoplast and it has a huge potentiality for targeted manipulation of wheat genome for crop improvement purposes.
引用
收藏
页码:31 / 41
页数:10
相关论文
共 50 条
  • [1] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    [J]. FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [2] Efficient multiplex genome editing by CRISPR/Cas9 in common wheat
    Li, Jihu
    Zhang, Shujuan
    Zhang, Rongzhi
    Gao, Jie
    Qi, Yiping
    Song, Guoqi
    Li, Wei
    Li, Yulian
    Li, Genying
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (03) : 427 - 429
  • [3] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    [J]. Journal of Genetics and Genomics, 2016, 43 (05) : 227 - 228
  • [4] CRISPR/Cas9 and Genome Editing in Drosophila
    Andrew R.Bassett
    Ji-Long Liu
    [J]. Journal of Genetics and Genomics, 2014, 41 (01) : 7 - 19
  • [5] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    [J]. JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19
  • [6] The CRISPR/Cas9 Genome Editing Revolution
    Jiao, Renjie
    Gao, Caixia
    [J]. JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) : 227 - 228
  • [7] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264
  • [8] CRISPR/Cas9 genome editing in crops
    Smedley, Mark
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S104 - S104
  • [9] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    [J]. THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [10] Application of CRISPR/Cas9 Genome Editing System for Hexaploid Wheat.
    Tian, Bin
    Chen, Yueying
    Su, Zhenqi
    Chen, Hui
    Bai, Guihua
    Trick, Harold N.
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 : S47 - S47