An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method

被引:1
|
作者
Tan, Yi [1 ]
Yu, Xianglin [2 ]
Zhang, Zhigang [3 ]
Tian, Jialin [2 ]
Feng, Na [1 ]
Tang, Chuanhong [1 ]
Zou, Gen [1 ]
Zhang, Jingsong [1 ]
机构
[1] Shanghai Acad Agr Sci, Inst Edible Fungi, Natl Engn Res Ctr Edible Fungi, Shanghai 201403, Peoples R China
[2] Shanghai Ocean Univ, Coll Food Sci & Technol, Shanghai 201306, Peoples R China
[3] Shanghai Normal Univ, Coll Life Sci, Shanghai 200234, Peoples R China
关键词
Ganoderma lucidum; CRISPR/Cas9; genome editing; ribonucleoproteins (RNPs); the orotidine 5 & PRIME; -monophosphate decarboxylase gene (ura3); TRITON X-100; MUSHROOM; PHASE;
D O I
10.3390/jof9121170
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar 'Hunong No. 1'. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5 '-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10-569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264
  • [32] CRISPR/Cas9 genome editing in crops
    Smedley, Mark
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S104 - S104
  • [33] CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells
    Bloomer, Hanan
    Khirallah, Jennifer
    Li, Yamin
    Xu, Qiaobing
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 181
  • [34] Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line
    Dehler, Carola E.
    Boudinot, Pierre
    Martin, Samuel A. M.
    Collet, Bertrand
    MARINE BIOTECHNOLOGY, 2016, 18 (04) : 449 - 452
  • [35] Genome editing via delivery of Cas9 ribonucleoprotein
    DeWitt, Mark A.
    Corn, Jacob E.
    Carroll, Dana
    METHODS, 2017, 121 : 9 - 15
  • [36] Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line
    Carola E. Dehler
    Pierre Boudinot
    Samuel A. M. Martin
    Bertrand Collet
    Marine Biotechnology, 2016, 18 : 449 - 452
  • [37] A Simple and Efficient CRISPR/Cas9 System Using a Ribonucleoprotein Method for Flammulina filiformis
    Liu, Jianyu
    Cui, Haiyang
    Wang, Ruijuan
    Xu, Zhen
    Yu, Hailong
    Song, Chunyan
    Lu, Huan
    Li, Qiaozhen
    Xing, Danrun
    Tan, Qi
    Sun, Weiming
    Zou, Gen
    Shang, Xiaodong
    JOURNAL OF FUNGI, 2022, 8 (10)
  • [38] Efficient Genome Editing in Bacillus licheniformis Mediated by a Conditional CRISPR/Cas9 System
    Li, Youran
    Wang, Hanrong
    Zhang, Liang
    Ding, Zhongyang
    Xu, Sha
    Gu, Zhenghua
    Shi, Guiyang
    MICROORGANISMS, 2020, 8 (05)
  • [39] Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
    Liang, Zhen
    Chen, Kunling
    Li, Tingdong
    Zhang, Yi
    Wang, Yanpeng
    Zhao, Qian
    Liu, Jinxing
    Zhang, Huawei
    Liu, Cuimin
    Ran, Yidong
    Gao, Caixia
    NATURE COMMUNICATIONS, 2017, 8
  • [40] Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
    Zhen Liang
    Kunling Chen
    Tingdong Li
    Yi Zhang
    Yanpeng Wang
    Qian Zhao
    Jinxing Liu
    Huawei Zhang
    Cuimin Liu
    Yidong Ran
    Caixia Gao
    Nature Communications, 8