On Finite Groups with Pπ-Subnormal Subgroups

被引:0
|
作者
Vasil'eva, T. I. [1 ]
Koranchuk, A. G. [2 ]
机构
[1] Belarusian State Univ Transport, Gomel 246653, BELARUS
[2] Francisk Skorina Gomel State Univ, Gomel 246019, BELARUS
关键词
P-pi-subnormal subgroup; pi-solvable group; pi-supersolvable group; Sylow subgroup; hereditary saturated formation;
D O I
10.1134/S0001434623090158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a set of primes. A subgroup H of a group G is said to be P-pi-subnormal in G if either H = G or there exists a chain of subgroups beginning with H and ending with G such that the index of each subgroup in the chain is either a prime in pi or a pi'-number. Properties of P-pi-subnormal subgroups are studied. In particular, it is proved that the class of all pi-closed groups in which all Sylow subgroups are P-pi-subnormal is a hereditary saturated formation. Criteria for the P-pi-supersolvability of a P-pi-closed group with given systems of Pr-subnormal subgroups are obtained.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [31] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF SURGICAL ONCOLOGY, 2023, : 595 - 610
  • [32] Finite Groups with Subnormal Schmidt Subgroups
    V. N. Knyagina
    V. S. Monakhov
    Siberian Mathematical Journal, 2004, 45 : 1075 - 1079
  • [33] Finite Groups with ℙ-Subnormal Sylow Subgroups
    V. N. Kniahina
    V. S. Monakhov
    Ukrainian Mathematical Journal, 2021, 72 : 1571 - 1578
  • [34] On 𝜎-Subnormal Subgroups of Finite 3'-Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    Ukrainian Mathematical Journal, 2020, 72 : 935 - 941
  • [35] Finite groups with subnormal Schmidt subgroups
    Knyagina, VN
    Monakhov, VS
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) : 1075 - 1079
  • [36] Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Yi, X.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [37] Finite Factorised Groups with Partially Solvable P-Subnormal Subgroups
    Monakhov, V.
    Kniahina, V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (04) : 441 - 445
  • [38] Finite groups with generalized P-subnormal second maximal subgroups
    Kovaleva, Viktoria A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [39] Finite factorizable groups with solvable P2-subnormal subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (01) : 56 - 63
  • [40] Residually finite groups with all subgroups subnormal
    Smith, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 679 - 680