The nonconforming virtual element method for optimal control problem governed by Stokes equations

被引:0
|
作者
Sun, Chongna [1 ]
Yang, Minghui [1 ]
Zhou, Zhaojie [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
The nonconforming virtual element method; Optimal control problem; Stokes equations; A priori error estimate; General elements; ERROR ANALYSIS; DISCRETIZATION;
D O I
10.1007/s12190-024-02035-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the lowest-order nonconforming virtual element approximation of optimal control problem governed by Stokes equations. Based on the lowest-order virtual element approximation of the state equation and variational discretization of the control variable, we build up the virtual element discrete scheme and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document} norms are derived. Moreover, the presented method can also handle general polygonal meshes with arbitrary nodes (including non-convex and degenerate elements). Numerical experiments are carried out to confirm the convergence analysis and illustrate the theoretical findings.
引用
收藏
页码:2019 / 2043
页数:25
相关论文
共 50 条
  • [1] Adaptive Virtual Element Method for Optimal Control Problem Governed by Stokes Equations
    Li, Yanwei
    Wang, Qiming
    Zhou, Zhaojie
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [2] Adaptive Virtual Element Method for Optimal Control Problem Governed by Stokes Equations
    Yanwei Li
    Qiming Wang
    Zhaojie Zhou
    Journal of Scientific Computing, 2023, 97
  • [3] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cangiani, Andrea
    Gyrya, Vitaliy
    Manzini, Gianmarco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3411 - 3435
  • [4] Virtual element discretization method to optimal control problem governed by Stokes equations with pointwise control constraint on arbitrary polygonal meshes
    Li, Yanwei
    Liu, Huipo
    Zhou, Zhaojie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 450
  • [5] A Nonconforming Finite Element Method for Constrained Optimal Control Problems Governed by Parabolic Equations
    Guan, Hong-Bo
    Shi, Dong-Yang
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1193 - 1211
  • [6] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [7] The nonconforming virtual element method for the Navier-Stokes equations
    Xin Liu
    Zhangxin Chen
    Advances in Computational Mathematics, 2019, 45 : 51 - 74
  • [8] The nonconforming virtual element method for the Darcy-Stokes problem
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370
  • [9] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711
  • [10] Homogenization of a boundary optimal control problem governed by Stokes equations
    Sardar, Bidhan Chandra
    Sufian, Abu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) : 2944 - 2974