The nonconforming virtual element method for optimal control problem governed by Stokes equations

被引:0
|
作者
Sun, Chongna [1 ]
Yang, Minghui [1 ]
Zhou, Zhaojie [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
The nonconforming virtual element method; Optimal control problem; Stokes equations; A priori error estimate; General elements; ERROR ANALYSIS; DISCRETIZATION;
D O I
10.1007/s12190-024-02035-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the lowest-order nonconforming virtual element approximation of optimal control problem governed by Stokes equations. Based on the lowest-order virtual element approximation of the state equation and variational discretization of the control variable, we build up the virtual element discrete scheme and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document} norms are derived. Moreover, the presented method can also handle general polygonal meshes with arbitrary nodes (including non-convex and degenerate elements). Numerical experiments are carried out to confirm the convergence analysis and illustrate the theoretical findings.
引用
收藏
页码:2019 / 2043
页数:25
相关论文
共 50 条
  • [31] Virtual Element Method for Control Constrained Dirichlet Boundary Control Problem Governed by the Diffusion Problem
    Tushar, Jai
    Sau, Ramesh Chandra
    Kumar, Anil
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [32] Covolume method for new nonconforming rectangle element for the Stokes problem
    Kang, KS
    Kwak, DY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1063 - 1078
  • [33] A nonconforming Trefftz virtual element method for the Helmholtz problem
    Mascotto, Lorenzo
    Perugia, Ilaria
    Pichler, Alexander
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (09): : 1619 - 1656
  • [34] A Nonconforming Virtual Element Method for the Elliptic Interface Problem
    Wang, Haimei
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (02) : 397 - 417
  • [35] Covolume method for new nonconforming rectangle element for the stokes problem
    Kab Seok Kang
    Do Young Kwak
    Computers and Mathematics with Applications, 2002, 43 (8-9): : 1063 - 1078
  • [36] FINITE ELEMENT ANALYSIS OF OPTIMAL CONTROL PROBLEM GOVERNED BY STOKES EQUATIONS WITH L2-NORM STATE-CONSTRAINTS
    Niu, Haifeng
    Yang, Danping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (05) : 589 - 604
  • [37] A LEGENDRE-GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY STOKES EQUATIONS
    Chen, Yanping
    Huang, Fenglin
    Yi, Nianyu
    Liu, Wenbin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1625 - 1648
  • [38] Global superconvergence for optimal control problems governed by Stokes equations
    Liu, Huipo
    Yan, Ningning
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03) : 283 - 302
  • [39] SUPG-Stabilized Virtual Element Method for Optimal Control Problem Governed by a Convection Dominated Diffusion Equation
    Wang, Qiming
    Zhou, Zhaojie
    ENTROPY, 2021, 23 (06)
  • [40] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations
    Zhiqiang Cai
    Jim Douglas
    Xiu Ye
    CALCOLO, 1999, 36 : 215 - 232