Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations

被引:1
|
作者
Gan, Di [1 ]
Zhang, Guo-Feng [1 ]
Liang, Zhao-Zheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equations; Approximate inverse preconditioner; R-circulant matrix; Fast Fourier transform; Discrete sine transform; NUMERICAL-METHODS; DIFFERENTIAL-EQUATIONS; ITERATION METHOD; REAL;
D O I
10.1007/s11075-023-01675-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider solutions for discrete systems arising from multi-term time-fractional diffusion equations. Using discrete sine transform techniques, we find that all-at-once systems of such equations have a structure similar to that of diagonal-plus-Toeplitz matrices. We establish a generalized circulant approximate inverse preconditioner for the all-at-once systems. Through a detailed analysis of the preconditioned matrices, we show that the spectrum of the obtained preconditioned matrices is clustered around one. We give some numerical examples to demonstrate the effectiveness of the proposed preconditioner.
引用
收藏
页码:1499 / 1531
页数:33
相关论文
共 50 条
  • [31] A Preconditioning Technique for All-at-Once System from the Nonlinear Tempered Fractional Diffusion Equation
    Zhao, Yong-Liang
    Zhu, Pei-Yong
    Gu, Xian-Ming
    Zhao, Xi-Le
    Jian, Huan-Yan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [32] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [33] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [34] An α-robust finite element method for a multi-term time-fractional diffusion problem
    Huang, Chaobao
    Stynes, Martin
    Chen, Hu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [35] Exact Controllability of Multi-Term Time-Fractional Differential System with Sequencing Techniques
    Vikram Singh
    Dwijendra N. Pandey
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 105 - 120
  • [36] Multi-term time-fractional Bloch equations and application in magnetic resonance imaging
    Qin, Shanlin
    Liu, Fawang
    Turner, Ian
    Vegh, Viktor
    Yu, Qiang
    Yang, Qianqian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 308 - 319
  • [37] Classical unique continuation property for multi-term time-fractional evolution equations
    Ching-Lung Lin
    Gen Nakamura
    Mathematische Annalen, 2023, 385 : 551 - 574
  • [38] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [39] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [40] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82