Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations

被引:1
|
作者
Gan, Di [1 ]
Zhang, Guo-Feng [1 ]
Liang, Zhao-Zheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equations; Approximate inverse preconditioner; R-circulant matrix; Fast Fourier transform; Discrete sine transform; NUMERICAL-METHODS; DIFFERENTIAL-EQUATIONS; ITERATION METHOD; REAL;
D O I
10.1007/s11075-023-01675-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider solutions for discrete systems arising from multi-term time-fractional diffusion equations. Using discrete sine transform techniques, we find that all-at-once systems of such equations have a structure similar to that of diagonal-plus-Toeplitz matrices. We establish a generalized circulant approximate inverse preconditioner for the all-at-once systems. Through a detailed analysis of the preconditioned matrices, we show that the spectrum of the obtained preconditioned matrices is clustered around one. We give some numerical examples to demonstrate the effectiveness of the proposed preconditioner.
引用
收藏
页码:1499 / 1531
页数:33
相关论文
共 50 条
  • [21] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [22] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [23] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [24] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    Acta Mathematica Scientia, 2024, 44 (05) : 2019 - 2040
  • [25] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [26] Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives
    Fan, Bin
    AIMS MATHEMATICS, 2024, 9 (03): : 7293 - 7320
  • [27] A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations
    Hu, Li
    Li, Zhiyuan
    Yang, Xiaona
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 2019 - 2040
  • [28] A higher order unconditionally stable numerical technique for multi-term time-fractional diffusion and advection-diffusion equations
    Choudhary, Renu
    Singh, Satpal
    Kumar, Devendra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [29] A Preconditioning Technique for All-at-Once System from the Nonlinear Tempered Fractional Diffusion Equation
    Yong-Liang Zhao
    Pei-Yong Zhu
    Xian-Ming Gu
    Xi-Le Zhao
    Huan-Yan Jian
    Journal of Scientific Computing, 2020, 83
  • [30] Classical unique continuation property for multi-term time-fractional evolution equations
    Lin, Ching-Lung
    Nakamura, Gen
    MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 551 - 574