On index divisors and monogenity of certain number fields defined by x12 + axm + b

被引:0
|
作者
El Fadil, Lhoussain [1 ]
Kchit, Omar [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci El Dhar Mahraz, POB 1874, Atlas Fes, Morocco
来源
RAMANUJAN JOURNAL | 2024年 / 63卷 / 02期
关键词
Theorem of Dedekind; Theorem of Ore; Prime ideal factorization; Newton polygon; Index of a number field; Power integral basis; Monogenic; POLYGONS;
D O I
10.1007/s11139-023-00768-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the monogenity of any number field defined by a monic irreducible trinomial F(x) = x(12) + ax(m) + b ? Z[x] with 1 = m = 11 an integer. For every integer m, we give sufficient conditions on a and b so that the field index i(K) is not trivial. In particular, if i(K) ? 1, then K is not monogenic. For m = 1, we give necessary and sufficient conditions on a and b, which characterize when a rational prime p divides the index i(K). For every prime divisor p of i(K), we also calculate the highest power p dividing i(K), in such a way we answer the problem 22 of Narkiewicz (Elementary and analytic theory of algebraic numbers, Springer Verlag, Auflag, 2004) for the number fields defined by trinomials x(12) + ax + b.
引用
下载
收藏
页码:451 / 482
页数:32
相关论文
共 50 条
  • [11] ON MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    Yakkou, Hamid Ben
    El Fadil, Lhoussain
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (02) : 199 - 221
  • [12] On common index divisor and monogenity of certain number fields defined by trinomials x6 + ax plus b
    El Fadil, Lhoussain
    QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1609 - 1627
  • [13] On Monogenity of Certain Pure Number Fields Defined by x60 - m
    El Fadil, Lhoussain
    Choulli, Hanan
    Kchit, Omar
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (02) : 283 - 293
  • [14] On Monogenity of Certain Pure Number Fields Defined by x60 − m
    Lhoussain El Fadil
    Hanan Choulli
    Omar Kchit
    Acta Mathematica Vietnamica, 2023, 48 : 283 - 293
  • [15] On monogenity of certain pure number fields defined by x20 - m
    El Fadil, Lhoussain
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1063 - 1071
  • [16] On non-monogenity of the number fields defined by certain quadrinomials
    Jakhar, Anuj
    Kaur, Sumandeep
    Kumar, Surender
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (06) : 2448 - 2459
  • [17] On non monogenity of certain number fields defined by trinomials x6 + ax3 + b
    El Fadil, Lhoussain
    JOURNAL OF NUMBER THEORY, 2022, 239 : 489 - 500
  • [18] On monogenity of certain pure number fields defined by xpr - m
    Ben Yakkou, Hamid
    El Fadil, Lhoussain
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (10) : 2235 - 2242
  • [19] NON-MONOGENITY OF CERTAIN OCTIC NUMBER FIELDS DEFINED BY TRINOMIALS
    JAKHAR, A. N. U. J.
    KAUR, S. U. M. A. N. D. E. E. P.
    KUMAR, S. U. R. E. N. D. E. R.
    COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 145 - 152
  • [20] INDEX CHARACTERIZATION AND MONOGENITY OF SEPTIC NUMBER FIELDS DEFINED BY x7 + ax4 + b
    Kchit, Omar
    QUAESTIONES MATHEMATICAE, 2024,