On index divisors and monogenity of certain number fields defined by x12 + axm + b

被引:0
|
作者
El Fadil, Lhoussain [1 ]
Kchit, Omar [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci El Dhar Mahraz, POB 1874, Atlas Fes, Morocco
来源
RAMANUJAN JOURNAL | 2024年 / 63卷 / 02期
关键词
Theorem of Dedekind; Theorem of Ore; Prime ideal factorization; Newton polygon; Index of a number field; Power integral basis; Monogenic; POLYGONS;
D O I
10.1007/s11139-023-00768-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the monogenity of any number field defined by a monic irreducible trinomial F(x) = x(12) + ax(m) + b ? Z[x] with 1 = m = 11 an integer. For every integer m, we give sufficient conditions on a and b so that the field index i(K) is not trivial. In particular, if i(K) ? 1, then K is not monogenic. For m = 1, we give necessary and sufficient conditions on a and b, which characterize when a rational prime p divides the index i(K). For every prime divisor p of i(K), we also calculate the highest power p dividing i(K), in such a way we answer the problem 22 of Narkiewicz (Elementary and analytic theory of algebraic numbers, Springer Verlag, Auflag, 2004) for the number fields defined by trinomials x(12) + ax + b.
引用
收藏
页码:451 / 482
页数:32
相关论文
共 50 条