Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [42] Predicting Kidney Discard Using Machine Learning
    Barah, Masoud
    Mehrotra, Sanjay
    TRANSPLANTATION, 2021, 105 (09) : 2054 - 2071
  • [43] Predicting apple bruising using machine learning
    Holmes, G
    Cunningham, SJ
    Dela Rue, BT
    Bollen, AF
    INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF MODELLING AS AN INNOVATIVE TECHNOLOGY IN THE AGRI-FOOD-CHAIN - MODEL-IT, 1998, (476): : 289 - 296
  • [44] Predicting abatacept retention using machine learning
    Alten, Rieke
    Behar, Claire
    Merckaert, Pierre
    Afari, Ebenezer
    Vannier-Moreau, Virginie
    Ohayon, Anael
    Connolly, Sean E.
    Najm, Aurelie
    Juge, Pierre-Antoine
    Liu, Gengyuan
    Rai, Angshu
    Elbez, Yedid
    Lozenski, Karissa
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)
  • [45] Predicting Bitcoin Prices Using Machine Learning
    Dimitriadou, Athanasia
    Gregoriou, Andros
    ENTROPY, 2023, 25 (05)
  • [46] Predicting building contamination using machine learning
    Martin, Shawn
    McKenna, Sean
    ICMLA 2007: SIXTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2007, : 192 - +
  • [47] Predicting Hardware Failure Using Machine Learning
    Chigurupati, Asha
    Thibaux, Romain
    Lassar, Noah
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM 2016 PROCEEDINGS, 2016,
  • [48] PREDICTING HYPERTENSION CONTROL USING MACHINE LEARNING
    Cartabuke, Richard
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2023, 38 : S636 - S636
  • [49] Predicting photoresist sensitivity using machine learning
    Ghule, Balaji G.
    Kim, Minkyeong
    Jang, Ji-Hyun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (11) : 900 - 910
  • [50] Severe Convective Weather Forecast Using Machine Learning Models
    Jimmy Nogueira de Castro
    Gutemberg Borges França
    Vinícius Albuquerque de Almeida
    Valdonel Manoel de Almeida
    Pure and Applied Geophysics, 2022, 179 : 2945 - 2955