Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Using ionospheric scintillation observations for studying the morphology of equatorial ionospheric bubbles
    Dandekar, BS
    Groves, KM
    RADIO SCIENCE, 2004, 39 (03) : RS3010 - 1
  • [22] Predicting Second-Mode Instability Evolution in Hypersonic Boundary Layers Using Machine Learning Methods
    Liu, Wanting
    Yang, Zhenyu
    Xu, Binghui
    Cheng, Jiangyi
    Wu, Jie
    AIAA JOURNAL, 2025,
  • [23] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [24] Predicting Enthalpy of Combustion Using Machine Learning
    Jameel, Abdul Gani Abdul
    Al-Muslem, Ali
    Ahmad, Nabeel
    Alquaity, Awad B. S.
    Zahid, Umer
    Ahmed, Usama
    PROCESSES, 2022, 10 (11)
  • [25] Predicting glycosylation stereoselectivity using machine learning
    Moon, Sooyeon
    Chatterjee, Sourav
    Seeberger, Peter H.
    Gilmore, Kerry
    CHEMICAL SCIENCE, 2021, 12 (08) : 2931 - 2939
  • [26] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355
  • [27] Predicting Packaging Sizes Using Machine Learning
    Heininger M.
    Ortner R.
    Operations Research Forum, 3 (3)
  • [28] Predicting mutational function using machine learning
    Shea, Anthony
    Bartz, Josh
    Zhang, Lei
    Dong, Xiao
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2023, 791
  • [29] Predicting IRI Using Machine Learning Techniques
    Sharma, Ankit
    Sachdeva, S. N.
    Aggarwal, Praveen
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (01) : 128 - 137
  • [30] Predicting Employee Attrition using Machine Learning
    Alduayj, Sarah S.
    Rajpoot, Kashif
    PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2018, : 93 - 98