Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

被引:0
|
作者
Garcia, D. [1 ]
Rojas, E. L. [2 ]
Hysell, D. L. [2 ]
机构
[1] Cornell Univ, Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA
关键词
machine learning; equatorial spread F; forecasting; neural networks; random forests; ionospheric irregularities; PREREVERSAL ENHANCEMENT; PLASMA BUBBLES; SPREAD-F; RADAR; DRIFT;
D O I
10.1029/2023SW003505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Predicting IRI Using Machine Learning Techniques
    Ankit Sharma
    S. N. Sachdeva
    Praveen Aggarwal
    International Journal of Pavement Research and Technology, 2023, 16 : 128 - 137
  • [32] PREDICTING ASA SCORES USING MACHINE LEARNING
    Ramaswamy, Priya
    Pearson, John F.
    Raub, Dana
    Santer, Peter
    Eikermann, Matthias
    ANESTHESIA AND ANALGESIA, 2019, 128 : 947 - 948
  • [33] Predicting the Price of Bitcoin Using Machine Learning
    McNally, Sean
    Roche, Jason
    Caton, Simon
    2018 26TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2018), 2018, : 339 - 343
  • [34] Predicting Atlantic Hurricanes Using Machine Learning
    Velasco Herrera, Victor Manuel
    Martell-Dubois, Raul
    Soon, Willie
    Velasco Herrera, Graciela
    Cerdeira-Estrada, Sergio
    Zuniga, Emmanuel
    Rosique-de la Cruz, Laura
    ATMOSPHERE, 2022, 13 (05)
  • [35] Predicting Phishing Vulnerabilities Using Machine Learning
    Rutherford, Sarah
    Lin, Kevin
    Blaine, Raymond W.
    SOUTHEASTCON 2022, 2022, : 779 - 786
  • [36] Predicting hypertension control using machine learning
    Mroz, Thomas
    Griffin, Michael
    Cartabuke, Richard
    Laffin, Luke
    Russo-Alvarez, Giavanna
    Thomas, George
    Smedira, Nicholas
    Meese, Thad
    Shost, Michael
    Habboub, Ghaith
    PLOS ONE, 2024, 19 (03):
  • [37] Predicting ASD Using Optimized Machine Learning
    Almana, Shaikhah
    Hammad, Mustafa
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1598 - 1602
  • [38] Predicting the Geoeffectiveness of CMEs Using Machine Learning
    Pricopi, Andreea-Clara
    Paraschiv, Alin Razvan
    Besliu-Ionescu, Diana
    Marginean, Anca-Nicoleta
    ASTROPHYSICAL JOURNAL, 2022, 934 (02):
  • [39] Predicting Hadoop misconfigurations using machine learning
    Robert, Andrew
    Gupta, Apaar
    Shenoy, Vinayak
    Sitaram, Dinkar
    Kalambur, Subramaniam
    SOFTWARE-PRACTICE & EXPERIENCE, 2020, 50 (07): : 1168 - 1183
  • [40] Predicting the Mpemba effect using machine learning
    Amorim, Felipe
    Wisely, Joey
    Buckley, Nathan
    DiNardo, Christiana
    Sadasivan, Daniel
    PHYSICAL REVIEW E, 2023, 108 (02)