Classification of trees by Laplacian eigenvalue distribution and edge covering number

被引:1
|
作者
Akbari, S. [1 ]
Alaeiyan, M. [2 ]
Darougheh, M. [2 ]
Trevisan, V [3 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[3] UFRGS Inst Matemat & Estat, Porto Alegre, Brazil
关键词
Laplacian eigenvalue; Edge covering number; Vertex connectivity; DOMINATION NUMBER; CONNECTIVITY; SPECTRUM;
D O I
10.1016/j.laa.2023.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected graph G of order n and an interval I, denote by mGI the number of Laplacian eigenvalues of G in I. In this paper, we present bounds for mGI in terms of the structural parameter ,9'(G), the edge covering number of G. We prove a known result that m(G) [1, n] = ,9'(G). We also show that all graphs G ? C-3, C(7 )with minimum degree at least two, m(G) [1, n] = ,9'(G) + 1. We present a short proof of the known result that m(G) (n - 1, n] = ?(G), where ?(G) is the vertex connectivity of G. Additionally, we classify all trees T such that mT(n - i, n] = j, for 1 = i, j = 2.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [1] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [2] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    arXiv, 2022,
  • [3] Classification of graphs by Laplacian eigenvalue distribution and independence number
    Choi, Jinwon
    Moon, Sunyo
    Park, Seungkook
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2877 - 2893
  • [4] Domination number and Laplacian eigenvalue of trees
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 592 : 210 - 227
  • [5] Domination number and Laplacian eigenvalue of trees
    Xue J.
    Liu R.
    Yu G.
    Shu J.
    Linear Algebra and Its Applications, 2020, 592 : 210 - 227
  • [6] Domination number and Laplacian eigenvalue distribution
    Hedetniemi, Stephen T.
    Jacobs, David P.
    Trevisan, Vilmar
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 : 66 - 71
  • [7] Laplacian eigenvalue distribution of a graph with given independence number
    Choi, Jinwon
    Suil, O.
    Park, Jooyeon
    Wang, Zhiwen
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 448
  • [8] On trees with Laplacian eigenvalue one
    Barik, S.
    Lal, A. K.
    Pati, S.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 597 - 610
  • [9] On the second largest Laplacian eigenvalue of trees
    Guo, JM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 : 251 - 261
  • [10] Trees with a large Laplacian eigenvalue multiplicity
    Akbari, S.
    van Dam, E. R.
    Fakharan, M. H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 586 : 262 - 273