Classification of trees by Laplacian eigenvalue distribution and edge covering number

被引:1
|
作者
Akbari, S. [1 ]
Alaeiyan, M. [2 ]
Darougheh, M. [2 ]
Trevisan, V [3 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[3] UFRGS Inst Matemat & Estat, Porto Alegre, Brazil
关键词
Laplacian eigenvalue; Edge covering number; Vertex connectivity; DOMINATION NUMBER; CONNECTIVITY; SPECTRUM;
D O I
10.1016/j.laa.2023.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected graph G of order n and an interval I, denote by mGI the number of Laplacian eigenvalues of G in I. In this paper, we present bounds for mGI in terms of the structural parameter ,9'(G), the edge covering number of G. We prove a known result that m(G) [1, n] = ,9'(G). We also show that all graphs G ? C-3, C(7 )with minimum degree at least two, m(G) [1, n] = ,9'(G) + 1. We present a short proof of the known result that m(G) (n - 1, n] = ?(G), where ?(G) is the vertex connectivity of G. Additionally, we classify all trees T such that mT(n - i, n] = j, for 1 = i, j = 2.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [21] Trees with cantor eigenvalue distribution
    He, L
    Liu, XW
    Strang, G
    STUDIES IN APPLIED MATHEMATICS, 2003, 110 (02) : 123 - 138
  • [22] The Zero (Total) Forcing Number and Covering Number of Trees
    Tu, Dongxin
    Li, Jianxi
    Shiu, Wai-Chee
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (04): : 657 - 670
  • [23] On the distribution of Laplacian eigenvalues of trees
    Braga, Rodrigo O.
    Rodrigues, Virginia M.
    Trevisan, Vilmar
    DISCRETE MATHEMATICS, 2013, 313 (21) : 2382 - 2389
  • [24] Edge-connectivity and (signless) Laplacian eigenvalue of graphs
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3777 - 3784
  • [25] The edge covering number of ordered sets
    Lee, JG
    ARS COMBINATORIA, 1999, 53 : 27 - 32
  • [26] The forcing edge covering number of a graph
    John, J.
    Vijayan, A.
    Sujitha, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (03): : 249 - 259
  • [27] Enumeration of solid 2-trees according to edge number and edge degree distribution
    Bousquet, M
    Lamathe, U
    DISCRETE MATHEMATICS, 2005, 298 (1-3) : 115 - 141
  • [28] COVERING EDGE SET OF A DIRECTED GRAPH WITH TREES
    VIDYASANKAR, K
    DISCRETE MATHEMATICS, 1978, 24 (01) : 79 - 85
  • [29] On the sth Laplacian eigenvalue of trees of order st+1
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (01) : 143 - 149
  • [30] The edge covering number of the intersection of two matroids
    Aharoni, Ron
    Berger, Eli
    Ziv, Ran
    DISCRETE MATHEMATICS, 2012, 312 (01) : 81 - 85