Improved Ship Detection with YOLOv8 Enhanced with MobileViT and GSConv

被引:14
|
作者
Zhao, Xuemeng [1 ]
Song, Yinglei [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China
关键词
ship detection; object detection; YOLOv8; MobileViT; GSConv;
D O I
10.3390/electronics12224666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In tasks that require ship detection and recognition, the irregular shapes of ships and complex backgrounds pose significant challenges. This paper presents an advanced extension of the YOLOv8 model to address these challenges. A lightweight visual transformer, MobileViTSF, is proposed and combined with the YOLOv8 model. To address the loss of semantic information that arises from inconsistent scales in the detection of small ships, a layer intended for the detection of small targets is introduced to lead to improved fusion of deep and shallow features. Furthermore, the traditional convolution (Conv) blocks are replaced with GSConv blocks, and a novel GSC2f block is designed for fewer model parameters and improved detection performance. Experiments on a benchmark dataset suggest that this new model can achieve significantly improved accuracy for ship detection with fewer model parameters and a reduced model size. A comparison with several other state-of-the-art methods shows that higher accuracy can be obtained for ship detection with this model. Moreover, this new model is suitable for edge computing devices, demonstrating practical application value.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [22] ALF-YOLO: Enhanced YOLOv8 based on multiscale attention feature fusion for ship detection
    Wang, Siwen
    Li, Ying
    Qiao, Sihai
    OCEAN ENGINEERING, 2024, 308
  • [23] RCSA-YOLO: Improved SAR Ship Instance Segmentation of YOLOv8
    Wang, Lei
    Zhang, Bin
    Wu, Qihong
    Computer Engineering and Applications, 2024, 60 (18) : 103 - 113
  • [24] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [25] Falling Detection of Toddlers Based on Improved YOLOv8 Models
    Yang, Ziqian
    Tsui, Baiyu
    Ning, Jiachuan
    Wu, Zhihui
    Sensors, 2024, 24 (19)
  • [26] Automotive adhesive defect detection based on improved YOLOv8
    Chunjie Wang
    Qibo Sun
    Xiaogang Dong
    Jia Chen
    Signal, Image and Video Processing, 2024, 18 : 2583 - 2595
  • [27] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2024,
  • [28] Improved YOLOv8 Urban Vehicle Target Detection Algorithm
    Xu, Degang
    Wang, Shuangchen
    Wang, Zaiqing
    Yin, Kedong
    Computer Engineering and Applications, 2024, 60 (18) : 136 - 146
  • [29] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):
  • [30] Helmet detection algorithm based on lightweight improved YOLOv8
    Maoli Wang
    Haitao Qiu
    Jiarui Wang
    Signal, Image and Video Processing, 2025, 19 (1)