Energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping

被引:0
|
作者
Zhang, Hua-Lei [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
energy decay rate; Kelvin-Voigt damping; transmission; EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; EQUATIONS;
D O I
10.1002/mma.10041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping on a rectangular domain. The damping is imposed on one of wave equations. By the separation of variables method and the frequency domain method, we show that the optimal energy decay rate of the system is t-2/3$$ {t} circumflex {-2/3} $$, which is independent of wave speeds.
引用
收藏
页码:8721 / 8747
页数:27
相关论文
共 50 条
  • [31] Porous elastic system with Kelvin-Voigt: analyticity and optimal decay rate
    Oliveira, M. L. S.
    Maciel, E. S.
    Dos Santos, M. J.
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2860 - 2877
  • [32] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [33] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [34] On the porous-elastic system with Kelvin-Voigt damping
    Santos, M. L.
    Almeida Junior, D. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 498 - 512
  • [35] Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt damping
    Gimyong Hong
    Hakho Hong
    Journal of Evolution Equations, 2021, 21 : 2239 - 2264
  • [36] Wave Equations With Kelvin-Voigt Damping and Boundary Disturbance: A Study of the Asymptotic Gain Properties
    Karafyllis, Iasson
    Kontorinaki, Maria
    Krstic, Miroslav
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1926 - 1931
  • [37] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [38] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [39] Exponential decay for the semilinear wave equation with localized frictional and Kelvin-Voigt dissipating mechanisms
    Cavalcanti, Marcelo M.
    Gonzalez Martinez, Victor H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 273 - 293
  • [40] ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY
    Demchenko, Hanna
    Anikushyn, Andrii
    Pokojovy, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4382 - 4412