On the finite time collapsing rate of Kahler-Ricci flow on projective bundles

被引:0
|
作者
Zhang, Lei [1 ]
Zhang, Zhenlei [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
CONTRACTING EXCEPTIONAL DIVISORS; EINSTEIN METRICS;
D O I
10.1090/proc/16568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of finite time collapsing rate along Kahler-Ricci flow on projective bundles. It is shown that the diameter of the fibers tend to zero at the rate (T - t) (1/2 -E) for any ? > 0 as t approaches the singular time T.
引用
收藏
页码:5385 / 5389
页数:5
相关论文
共 50 条
  • [21] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [22] KAHLER-RICCI SOLITONS ON CERTAIN TORIC BUNDLES
    Nakagawa, Yasuhiro
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (02) : 379 - 390
  • [23] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [24] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [25] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [26] Scalar Curvature Behavior for Finite-Time Singularity of Kahler-Ricci Flow
    Zhang, Zhou
    MICHIGAN MATHEMATICAL JOURNAL, 2010, 59 (02) : 419 - 433
  • [27] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [28] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [29] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165
  • [30] Kahler-Ricci solitons on homogeneous toric bundles
    Podesta, Fabio
    Spiro, Andrea
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 642 : 109 - 127